
7 AD-fl46 030 ANALYSIS AND DESIGN METHODOLOGY
FOR VLSI COMPUTING 1/2.

NETkIORKS(U) INTEGRATED SYSTEMS INC PALO ALTO CA
H LEV-ARI AUG 84 ISI-46 N000i4-83-C-0377p UNCLASSIFIED F/G 9/2 NL

I ---- --; -122 ------

I"D

1.0.

11111 1.25 1 1. I.6
,__. !11

MICROCOPY RESOLUTION' TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

:2 " -- . .. - _- - . . - - : I.

AD-A146 030

ANALYSIS AND DESIGN METHODOLOGY FOR
VLSI COMPUTING NETWORKS 0

FINAL REPORT

HANOCH LEV-ARI

PREPARED FOR:

OFFICE OF NAVAL RESEARCH

800 NORTH QUINCY STREET

ARLINGTON, VIRGINIA 22217

ATTENTION: DR. DAVID W. MIZELL

PREPARED UNDER: DTIC
CONTRACT NO. N00014-83-C-0377 ELECTE

SSEP26

DSTM1UTON ST4TMEITA~
jippvedfixpublic releau"Distribution Unlimited i

ISI REPORT 46 * AUGUST 1984 -9

I1N1 FILE COPY
101 Universily Avenue Palo Alto, CA 94301-1695 Telephone 415'853-8400

84 09 05o1

TABLE OF CON T Ts

Section Title Pale 0

1 INTRODUCTION 1
2 MODELING PARALLEL ALGORITHMS AND ARCHITECTURES 5

2.1 Toward a Formal Definition of Algorithms

and Architectures 5

2.2 Modular Computing Networks 8

2.3 Causality and Executions 16

2.4 Hierarchical Composition of MCNs 19

2.5 Comparison of MCNs with Other Network Models . . . 23

2.5.1 Block-Diagrams and Finite-State Machines . 23

2.5.2 Data-Flow-Graphs and Petri-Nets 25

2.5.3 High-Level Programming Languages27

2.5.4 Summary 28 e
2.6 Formal Language Representation of MCqs28

2.7 Summary 32

3 STRUCTURAL ANALYSIS OFMs 35

3.1 Numbering of Variables and Processors 35..

3.2 Dimensionality and Order 36

3.3 Schedules. Delay and Throughput 40

3.4 Space-Time Diagrams47

3.5 Summary 56

4 ITERATIVE AND COMPLETELY REGULAR NETWORKS 57

4.1 Iterative MCNs and Hardware Architectures 57

4.2 Completely Regular MlCs 67

4.2.1 Space-Time Representations in Z3 68

4.2.2 Spatial Projection of MCNs in 70

4.3 Modular Decomposition of CN Models 72

4.3.1 Modular Decomposition of Linear

Multivariable Filters 73 - .

.f •.

S CLASSIFICATION OF ARCHITECTURES 79

5.1 Topological Equivalence 81

5.2 Architectural Equivalence 85

5.3 Periodicity Analysis and Throughput 85

5.4 Boundary Analysis 88

5.5 Summary 92

6 CLASSIFICATION OF SPACE-TIME REPRESENTATIONS 95...-

6.1 The Fundamental Space-Time Configurations 95

6.2 Architectures with Local Memory 96

6.3 Boundary Analysis101

6.3.1 The Configurations LM1, L2, R2 101

6.3.2 The Configurations RM2, 13, B3a, H3b . . . 104

6.3.3 The Configurations HM3a, R4 105

6.3.4 Summary 105

6.4 Interleaving Architectures by Local Memory 105

6.5 Summary............... 107

7 CONCLUSIONS 109

8 TECHNICAL PUBLICATIONS111

REF1ERENCES 113 .O -

APPENDIX A: PROOF OF THEOREM 2.2 FOR INFINITE MCNs 117

APPENDIX B: ADMISSIBLE ARCHITECTURES 119

APPENDIX C: PROOF OF THEOREM 2.3, MINIMAL EXECUTIONS OF

FINITE MCNs 121

APPENDIX D: ELEMENTARY EQUIVALENCE TRANSFORMATIONS 127

APPENDIX E: ANALYSIS OF MATRIX MULTIPLIERS 129

APPENDIX F: EQUIVALENCE VIA LINEAR TRANSFORMATIONS 141

cesson For
' rA&I

_J but ont -

Av,41.ibfljty Codes

A-, v a I _ o r
..' t I Special .

r

SECTION 1

INTRODUaION

Several methods for modeling and analysis of parallel algorithms and

architectures have been proposed in the recent years. These include

recursion-type methods, like recursion equations, z-transform descriptions

and 'do-loops' in high-level programming languages, and precedence-graph-

type methods like data-flow graphs (marked graphs) and related Petri-net

derived models [1], [2]. Most efforts have been recently directed towards

developing methodologies for structured parallel algorithms and

architectures and, in particul'ar, for systolic-array-like systems [3J-[10]. P
Some important properties of parallel algorithms have been identified in the

process of this research effort. These include executability (the absence

of deadlocks) pipelinability, regularity of structure, locality of

interconnections, and dimensionality. The research has also demonstrated

the feasibility of multirate systolic arrays with different rates of data

propagation along different directions in the array.

In this final report we present ,a new methodolo y for modeling and

! analysis of parallel algorithms and architectures. Our methodology provides

a unified conceptual framework, which-we call modular computina network,

that clearly displays the key properties of parallel systems. In

particular,

(1) Executability of algorithms is easily verified.

(2) Schedules of execution are easily determined. This allows for
simple evaluation of throughput rates and execution delays.

(3) Both synchronous and asynchronous (self-timed) modes of execution
can be handled with the same techniques.

(4) Algorithms are directly mappable into architectures. No elaborate
hardware compilation is required.

(5) The description of a parallel algorithm is independent of its
implementation. All possible choices of hardware implementation
are evident from the description of a given algorithm. The

equivalence of existing implementations can be readily
demonstrated.

(6) Both regular and irregular algorithms can be modeled. Models of -
regular algorithms are significantly simpler to analyze, since
they inherit the regularity of the underlying problem.

Our methodology is largely based upon the theory of directed graphs and can,

therefore, be expressed both informally, in pictorial fashion, and formally,

in the language of precedence relations and composition of functions. This

duality will, hopefully, help to bridge the gap between the two schools of "

research in this field. An outline of a formal language representation for

modular computing networks is also provided. ,

The multiplicity of possible hardware implementations for a given

computational scheme is efficiently displayed by a space-time

representation, a notational tool that has been incorporated into some

recent methodologies for modeling, analysis and design of parallel

architectures [23-31). Coordinate transformations of a given space-time

representation produce distinct hardware configurations which are equivalent

in the sense of being the implementations of the same computational scheme.

The problem of mapping a given algorithm into a desired hardware

configuration can, therefore, be partly reduced to choosing the appropriate

coordinate transformation in space-time. In particular, uniform recurrence

relations, which correspond to systolic-array architectures, are described

by regular apace-time representations. This implies that only linear

coordinate transformations are required, and that the entire computational

scheme can be described by a small collection of vectors in space-time, the

devendence vectors [25,27,28,30]. Consequently, the selection of a desired

hardware architecture for a given algorithm reduces to the determination of

an appropriate nonsingular matrix with integer entries. . -

A simple technique for transforming a given 3-dimensional space-time

representation into an equivalent canonical form is presented in Sections 5-

6. A catalogue of canonical forms is constructed, showing a total of 34

distinct systolic architectures. The task of selecting an appropriate

transformation for a given space-time representation reduces, therefore, to

the determination of the equivalent canonical form. The important result,

which has been overlooked in previous research, is that the canonical - -

equivalent of any given space-time representation is unigue. This means

2

that once a space-time representation has been specified there is no

flexibility left in the process of mapping it into systolic-array

architectures.

A small fraction of space-time representation does allow some

flexibility in selecting the hardware architecture, but only at the cost of

inefficient implementation. The well-known example of matrix

multiplication, which has four distinct realizations (see [4,5,7,101) turns

out to be one of the few cases where such flexibility is available. A

closer examination of the structure of the matrices to be multiplied reveals

that each realization is efficient under a different set of structural

assumptions (see Section 6.3). Thus, in summary, carefully specified

algorithms lead to unique space-time representations which, in turn, lead to

essentially unique architectures.

3

p

p

7-p

I

a.

-a.

- L.

1-~

-L

4 L I

SECTION 2

MODELING PARALLEL_&GORITHMS AND ARCHITECTURES

The concepts of 'algorithm' and 'architecture,' which have been widely

used for several decades, still seem to defy a formal definition. Books on

computation and algorithms either take these concepts for granted or provide

a sketchy definition using such broad terms as 'precise prescription.'

'computing agent,' 'well-understood instructions,' 'finite effort' and so

forth. The purpose of this section is to provide a simple formal model for

modeling and analysis of (parallel) algorithms and architectures. This

model, which we call modular comuuting network (MCNQ) exhibits all the

properties usually attributed both to algorithms and to hardware

architectures. As a first step toward the formal introduction of this model

we extract in Section 2.1 the main attributes of algorithms from their

characterizations in the literature. This analysis of literature leads to

the conclusion that algorithms can only be defined in a hierarchical manner,

i.e., as well-formed compositions of simpler algorithms, and that the

simplest (non-decomposable algorithms) cannot and need not be defined. The

L building blocks of the theory of algorithms are characterized in terms of

three attributes: Function (what building blocks do), execution time (how

* long they do it), and complexity (what does it cost to use them). These

observations are incorporated into the modular computing network model, as

described in Sections 2.2 - 2.6.

2.1 TOWAID A FORMAL DEFINITION OF ALGORITHMS AND ARCHITECTURES

In this section we attempt to extract the main attributes of algorithms

and architectures from a randomly chosen sample of 'definitions.' Most

characterizations of algorithms are Seared to the notion of sequential

L execution. Nevertheless, we shall see that this underlying assumption is

5

I uiu u~ u' u~ u--

*6

almost never made ezpliclt. As a result, the attributes of parallel

algorithms are, in fact, included in the available characterizations.

As a typical example consider the following definition. 'The term 6

'algorithm' in mathematics is taken to mean a computational process, carried

out according to a precise prescription and leading from given objects,

which may be permitted to vary, to a sought-for result' [11]. This

definition simply states that an algorithm is a well-defined input-output

map and that its domain contains at least one element, and usually more than

one. However, the term 'computational process' hints that an algorithm is

more than just a well-defined function. Indeed, 'A function is simply a

relationship between the members of one set and those of another. An

algorithm, on the other hand, is a procedure for evaluating a function'

[121.

But how are functions evaluated? We are told that 'this evaluation is

to be carried out by some sort of computing agent, which may be human,

mechanical, electronic, or whatever' [12]. Thus, the emphasis is on

physical realizability (the existence of a 'computing agent') but not on the

actual details of the realization. The first axiom of the theory of

algorithms is, therefore:

There exist basic functions that are physically realizable.

Further efforts to define physical realizability turn out to be quite -

futile. This is recognized by Aho, Hopcroft and Ullman who say, 'each

instruction of an algorithm must have a 'clear meaning' and must be

executable with a 'finite amount of effort.' Now what is clear to one

person may not be clear to another, and it is often difficult to prove

rigorously that an instruction can be carried out in a finite amount of

time' [131. Physical realizability is a matter of technology: What is non-

realizable today may become realizable in a year or two. The theory of

algorithms has to assume the existence of realizable basic input-output maps

but need not be concerned with the details of their implementation.

Therefore, the core of any theory of algorithms is a non-empty collection of

undefined objects, which we shall call processors. These are the 'computing

agents' mentioned above, and they are assumed to have three attributes:

6

(I) Function (an input-output map)

(ii) Complexity measure

(iii) Execution time

A processor is assumed to be capable of evaluating the input-output map in

the specified execution time. The cost of utilizing the processor is*
specified by its complexity measure. Notice that the notion of 'effort'

mentioned above is a combination of the processor's complexity and its

execution time.

It is important to draw a distinction between an algorithm and its

description. An algorithm consists of processors (or basic functions),

corresponding to all the functions that need to be evaluated. For instance,

the computation of sin x via the first 100 terms of its MacLaurin series

requires 100 basic functions, one for each term of the truncated series.

The description of the same algorithm in terms of instructions requires only

one instruction, which will be repeated 100 times with varying coefficients.

Since descriptions of algorithms need to be communicated, stored and

implemented, they must be finite, i.e., contain a finite number of

instructions. The algorithm itself, on the other hand, may consist of an

infinite number of processors, and used to process an infinite number of

inputs into an infinite number of outputs. Such are, for instance, most

signal processing algorithms: Their inputs and outputs are time-series

-which may, in principle, be infinitely long. The executability of these

algorithms depends upon their capability to compute any specific output with

finite time and effort, and to use only a finite number of inputs for this

purpose. This observation also sheds a new light on the concept of

'termination,' which is usually overemphasized in definitions of algorithms.

The basic functions comprising an algorithm are interdependent in the

sense that the outputs of one processor may serve as inputs to other

processors. A complete characterization of an algorithm requires,

therefore, to specify both its basic operations and the interconnection

between these operations. The same statement applies, of course, to block-

diagram representations of hardware, to flow-graphs and, in fact, to any

network-type schematic. While algorithms are commonly described in some

L. 7

- ** * 7

formal language, they can also be described in a schematic manner.

Conversely, schematic hardware descriptions can be transformed into formal

language representations. To emphasize this equivalence we shall introduce

the concept of a modular oomuting network (MCN), which exhibits the common

attributes of both algorithms and architectures. Thus, an MCN is a pair

.°.'

where . , the function of the network, is essentially the collection of

basic functions discussed above, and (, the architecture of the network,

is a directed graph describing the interconnections between basic functions.

A detailed definition is provided in Section 2.1.

The concept of modular computing network is hierarchical b- nature.

Basic functions can be themselves characterized as networks c iven more

basic functions. This requires every MCN to have the three damental

attributes of a basic function: Input-output map. complexit a execution

time. Te shall show in the sequel how to uniquely associate such attributes

with modular computing networks. The theory of MCNs is, in short, the

theory of network composition (deducing the properties of a network from its .

components) and network decomposition (characterizing the components and

structure of a network whose composite properties have been specified).

2.2 MODULAR COMPUTING NETWORKS

A modular computing network (3N0) is a system of interconnected

modules. The structural information about the network is conveyed by -

specifying the interconnections between the modules, most conveniently in

the form of a directed graph (Figure 2-1). The functional information about

the network is conveyed by characterizing the information transferred

between modules and the processing of this information as it passes through

the modules.

The structural attributes of an 30N are completely specified by its

architecture, which is an ordered quadruple

Architecture (S. T. A, P) (2.2)

8

2 3

Figure 2-1. The Directed Graph Associated with a Modular Computing Network

9

I

where S.T are sets whose elements are called sources and siJk,

respectively, and A.P are relations between these sets.

The ancestry relation A specifies the connections of sources to 6

sinks. The elements of A. which are called arcs, are ordered source-sink

pairs

a e A =) a = (st). a S. t a T (2.3)

An arc represents a direct transfer of information from source to sink. Two

basic assumptions govern this transfer:

(1) There are no dangling sources. Every source is connected to
exactly one sink.

(2) There are no dangling sinks. Every sink is connected to exactly

one source.

These assumptions mean that the three sets S,T,A have an equal number of

elements, and that the ancestry relation A establishes a one-to-one

correspondence between arcs, sources and sinks, viz..

(S,t) a A <-=> s = A(t) <==) t - A-1 () (2.4)

This one-to-one correspondence will permit us to identify in the sequel each I
arc with its associated source and sink, and to eliminate almost all sinks

and sources from the description of network architectures.

The processing relation P specifies the processing of information

extracted from sinks into transformed information, which is re-injected into

sources. The elements of P, which are called processors, are ordered

pairs of non-empty finite sink-source sequences, viz.,

p a p ==> p - (t 1 .t 2 ,...,t ; lt2P,..., n (2.5)

ti • T, ai I S , 1 a. a, <

10I

t10

The input set (tI t 2 t) consists of all the sinks from which the

processor p extracts information. The transformed Information is

distributed among the members of the output set (si t 82 ,). The

one-to-one correspondence oetween sources, sinks and arcs allows us to

describe processor inputs and outputs in terms of arcs and to almost

completely eliminate the notion of sources and sinks. The set of input arcs

i oi a processor p is denoted by AI(p), and the set of output arcs from

the same processor is denoted by A0 (p). Each processor is assumed to have

unique inputs and outputs, namely

~Ai(p)C A (q) -

pvq g P, p # q M M A(P) C Ao(q) (2.6)

Similarly, every collection of processors, Q CP. has its uniquely
IL defined inputs and outputs, viz.,

Ai (Q) : U Ai(p)- Ao(p) (2.7a)
peQ psQ0

.1 and

Ao(Q) : Ao(p) - (p A(P) (2.7b)
peQ peG

-L
In other words, the inputs of Q are those inputs of processors in Q that

* are not connected to outputs of processors in Q. A similar statement holds

for outputs of Q. In particular, A (P). A (P) are the inputs and
i 0

outputs of the entire network.

Network architectures are most conveniently described by a directed

graph that combines together the ancestry relation A and the processing

* relation P into a single block-diagram-like representation (Figure 2-2a).

-- Sources and sinks are denoted by semi-circles, processors by circles and

arcs are, obviously, denoted by arcs. Sources and sinks are paired, and

each processor has its inputs and outputs adjacent to itself. An obvious

reduction in notation (Figure 2-2b) enhances the comprehensibility of the

description. The reduced form is, essentially, a block-diagram

*representation of the network architecture, and can be interpreted as a

directed graph

]1

Si

2)- ti S

S 3
6

t

4

a. Fall For. Description

p3 t
P3 7

b. Reduced Form Description

Figure 2-2. Equivalent Full Form and Reduced Form Descriptions of -2
Network Architectures

12

(V. Al (2.8.)

The set of vertices V of this graph is

V (AP). P. A (2.8b)
0

where A (P) are interpreted as the sources corresponding to the input arcs 0

i
and A 0 P) are interpreted as the sinks corresponding to the output arcs.

The arcs of the directed graph coincide with the original set of arcs A.

The interpretation of network architectures as directed graphs puts at our

disposal the powerful tools and results of graph theory. Some of these will

be used in the sequel to characterize and analyze the structure of modular

computing networks.

The functional attributes of an 0N4 are completely determined by its

architecture and by specifying the functional attributes of each processor. .

Thus, the function of a network is an ordered pair

4F M F) (2.9)

where X, F are sets whose elements are called variables and mgs,:

respectively.

The elements of X are sets (i.e., domains) and 'assigning a value to

a variable' amounts to choosing a particular element in the domain

corresponding to that variable. There is one variable, 5. associated

with every arc a £ A of the corresponding architecture. Consequently,

there is a one-to-one correspondence between variables, sources, sinks and

arcs. This correspondence makes it possible to refer to the variables

associated with the inputs of a given processor p as the input variables

of p and denote then by I(p). A similar notation, X (p), is used for

the variables associated with the outputs of the processor p.

The elements of F are multivariable maps. There is one map, f *
p

associated with every processor p a P of the corresponding architecture. . ,

It maps the input variables of this processor into the corresponding output

variables, viz.,

13

f : (p) -- > X (p) (2.10)P 1 0

which means that each of the output variables is a function of the input I

variables (not necessarily of all the input variables). This establishes a

precedence relation between the inputs and outputs of a given processor,

via.,

x -> y (2.11)

if x s Ai(P). y A 0 (p) and if y is a function of x (and, possibly,

of other input variables). The transitive closure of this relation Is also

a precedence (i.e.. a partial order): We shall say that x precedes zn

if there exists a sequence of variables such that

x - a. - n

in the sense of (2.11). This global precedence will also be denoted by

x* n * The ancestry (141 of a variable x a X is the set of all

variables that precede x, viz.,

a(x) := (z; z a X, z-) x) (2.12)

These are all the variables that have to be known in order to determine the S _

value of x.

Since the function of a network consisting of a ingle processor p is

r M (P) (P), f)-

there is, essentially, no distinction between the function and the Mg of

p. Thus, the input-output map of a single processor may also be called the

function of the processor. The same is not true for a network consisting of

several processors: The input-output map of a network is a single

multivariable map, relating the outputs of the network to its inputs; the

14

. .

function of the network, in contradistinction, is the collection of the

*atomic maps that comprise the network. The analysis Problem for

C computational networks is to determine the network map from its function.

The synthesis problem is to design an NCN (i.e., specify its structure and

function) that realizes a given multivariable Input-output map.

Modular computing networks need not be finite. In fact, most signal

processing algorithms correspond to infinite MCNs. However, the concept of

finite effort, involved in the evaluation of variables, imposes certain

constraints upon infinite networks. First, the number of inputs and outputs

of every processor must be finite. This means that the graph Ir) describing

the architecture is locally finite [15]. Next, every variable must be

computable with finite effort, so it will be required to have a finite

ancestry, viz.,

lazl < - for all x a 1 (2.13)

We shall also assume that the number of connected components of the

architecture , is countable. A modular computing network that satisfies

the three assumptions stated above--local finiteness, finite ancestry and

countable number of connected components--will be called structurally

finite. The following result characterizes the kind of infinity allowed in

such networks.

Theorem21

A structurally finite NQ4 has a countable number of variables and

processors. The following three statements are equivalent:

(1) The number of variables is finite.

(2) The number of output variables is finite.

(3) The number of processors is finite.

15

Proof:

The countability of the variables and processors of a connected
network

is a direct consequence of local finiteness (see, e.g., [151). Since each

connected component has a countable number of variables and processors, the

same is obviously true for a countable number of connected components. Thus

the number of variables and processors of a structurally finite MCN must be

countable. As a consequence of local finiteness, a finite number of

processors implies a finite number of variables and vice versa, so (1) and

(3) are equivalent. Clearly (1) implies (2), while (2), via the finite

ancestry condition, implies (1).

2.3 CAUSALITY AND EXECUTIONS

The definition of processors in the previous section did not take into

account any constraints imposed by hardware implementation considerations.

the most important among these constraints is the causality property. It

will be henceforth assumed that an output of a processor cannot become

available before the inputs of the same processor that precede this output

became available. In the beginning all variables are unavailable; the

inputs of the network are made available at a given instant, and following

that event, all variables of the network gradually become available. This

temporally ordered process, which we shall call execution, must be

consistent with the urecedence relation between variables induced by the

directed nature of the architecture (. A network that possesses an

execution in which every variable ultimately becomes available is said to be

executable (or 'live' in the terminology of Petri-nets [11. It is clear

that a network containing a cycle cannot be executable since every variable

C- arc) on the cycle can never become available. In order to satisfy the

causality assumption every variable in the cycle must temporally precede

itself (i.e.. it must be available before it becomes available (Fig. 2-3)),

which Is, clearly, impossible. It turns out that every acyclic architecture

is executable. To prove this result we shall need to formalize the notion

of execution.

16 . .

0

Al

Figure 2-3.

An execution of an 104 is a partitioning of its variables into a

sequence of finite disjoint sets. viz.,

I- (Si O0 1 1 S IS ~ S SS for i ILJ. USiin)

(2.14a)

* such that the precedence relation is preserved. viz.,

£(S) C J 1 of 0it1 ... (2.14b)
Jmto J

Here a(S) denotes the ancestry of the set S. defined as the collection

of all ancestors of members of S, viz.,

a(S) : ~)(2.15)
aSs

In simple words, every ancestor of x a Si must be contained in one of the

sets goal sit ... * Sil which we shall call levels. Executions can be

interpreted as multistep procedures for evaluating all the variables in 1. _

tse members of the level S8 are evaluated at the i-ti' step, and the

17 *

condition (2.14b) guarantees the availability of all their ancestors at the

right moment. Since the ancestors of the level S i strictly precede S i
all variables in this set can be evaluated simultaneously giving rise to a

parallel execution. If each set S contains exactly one variable the

execution will be called sequential.

Since each level Si in an execution is finite, the evaluation of the

variables in Si from the members of the preceding levels requires finite

effort. Since each variable belongs to some level S i . the total effort

involved in the evaluation of a single variable from the global inputs is

also finite. Thus, the existence of an execution for a given MCN implies

that every variable can be evaluated with finite time and hardware. A

network that has an execution deserves, therefore, to be called executable.

The preceding discussion implies that executability is a structural

property, since only the precedence relation between variables is involved

in constructing executions. The following result presents a simple

structural test for executability of UCls.

Theorem 2.

A structurally finite M10 is executable if, and only if, its

architecture is acyclic.

J1

If an execution exists, then it can be easily converted into a -

sequential execution by ordering the variables in each (finite) level S

in some arbitrary manner. Thus, executability is equivalent to the

existence of a seauential execution. By a well-known result in the theory

of finite direeted graphs, a sequential ordering exists if, and only if, the

graph is acyclic. Thus, the theorem holds for finite CN(s. The proof for

infinite networks is given in Appendix A.

UJ

1 8 -

-I

* ~ 2Ljjary 2,2

Executable MCNs always have sequential executions.

U

The corollary confirms the intuitive notion of executability: Any

computation that can be carried out in parallel can also be carried out

sequentially. Parallel execution offers, however, an attractive trade-off

between hardware and time, which will be discussed in detail in Sec. 3.4.

Theorem 2.2 provides a simple test for executability and, in effect,

prevents the construction of non-executable MCNs. Thus, the pitfalls of

starvation and deadlocks, well known in the context of Petri-nets [I] are

easy to avoid. Notice also that since each variable in an MCN is evaluated

r= exactly once, safeness [I] is guaranteed. This means that inputs to

processors do not disappear before they have been used to evaluate the

subsequent outputs. Safeness is achieved because once a variable becomes

available it stays so forever, and never disappears.

2.4 HIERARCHICAL COPOSITCN OF MCIs

Modular computing networks are, by definition, constructed in a

hierarchical manner. A processor p in an MCN can itself be a network,

provided it has a well defined input-output map f . In this section we
p

analyze the constraints that have to be imposed upon MCN composition in

order to guarantee the existence of a veil-defined global input-output map.

From the structural point of view a composition is simply a network of

networks. The 'processors' of the composite network are Mals and the arcs

represent interconnections between outputs of MCNs to inputs of other MNs.

The architecture of the composition, obtained by regarding each MCN

component as a simple 'processor' has to satisfy the constraints of Sec. 4

2.2. An architecture is called admissible if it satisfies the three

following constraints:

(1) No dangling inputs and outputs

(2) No cycles

(3) It is structurally finite

19

The importance of these constraints lies in the fact that an admissible

composition of admissible architectures is itself an admissible architecture

(see Appendix B for proof). It is interesting to notice that the S

admissibility conditions are instrumental also in establishing other

important properties of architectures. In particular, an admissible

composition of self-timed elements is itself a self-timed element [61, [71.

To establish the hierarchical nature of composition it is only

necessary to verify that an admissible composition of processors with a

well-defined input-output map also has a well defined input-output map.

This will be done by interpreting executions as decompositions of Mals into

elementary parallel and sequential combinations.

Parallel composition of two architectures, and 2' is defined as

the union of the two networks without any interconnections between and

2 (Fig. 2-4a). Sequential composition involves the connection of every

L output of 1/ to a corresponding input of f2; thus the number of outputs

of WI must equal the number of inputs of W2 (Fig. 4-2b). We shall

denote parallel composition by II # !2 and sequential composition by

* s "The parallel composition of a countable number of admissible

networks is always admissible. The sequential composition of a sequence of -

admissible networks is admissible too, i.e.,

2 '

is admissible because the unilateral nature of the cascade preserves the

finite ancestry property, while local-finiteness and countability of

components are clearly preserved.

20

Io°

a. Parallol Composition # 2

" .+

b. Sequential Composition V2

FiSure 2-4. Fundamental Architecture Compositions

I 21

Executions define a rearrangement of MCNs as a sequential composition

of subnetworks, each subnetwork being a parallel composition of processors.

The CIN of Figure 2-1 can, for instance, be described as 6

(f # e # e)*(e # f # e)0(f # • # f)*(e # f # e)(f # ea# e)1 2 4 3 5 6

where e is an identity input-output map. The importance of this U

observation lies in the fact that the input-output map of any sequential-

parallel composition is well-defint 4 . Consequently, every execution has a

well-defined input-output map. This leads to the following result.

Theorem 2.3

Every executable NCN has a unique well-defined input-output map.

Proof :

See Appendix C.

The theorem establishes the utility of the notion of execution. While 6 __

each execution corresponds to a different ordering of the computations

required to evaluate the output variables of an KCN, all executions

determine the same input-output map. And, while each execution provides a

different description of the network, they all correspond to the same KCN.

Descriptions of computational schemes will be considered eguivalent if

they determine the same input-output map. They will be considered

structurally equivalent if, in addition, they determine the same MCN.

Structural equivalence, which mounts to different choices of executions,

leaves both the architecture and the function of the iCN unchanged. Other

types of equivalence transformations will affect both the architecture and

the function of the NOJ but will keep its input-output map unchanged.

22

2.5 COMPARISON OF MC0s WITH OIER NETWORK MODELS

2.5.1 Block-_Dial raps and Finite-State Machines

Numerical algorithms are most frequently described in terms ofU

recursion equations involving indexed quantities, known as signals. Z-

transform notation and block diagrams (or signal-flow-graphs) are sometimes

used as equivalent descriptions of recursion equations.

The main difference between MCNs and Z-transform block-diagrams is in

the distinguished role of time in the latter model. A cascade connection of

three blocks, each with its own state (Fig. 2-Sa) corresponds to an MCN of

infinite length (Fig. 2-5b). Each row of the M0 represents a single step

of the recursion. Each input/output is a single variable, not a time-

series. While the MCN description seems wasteful, it does in fact enhance

our understanding of the various possibilities of implementation. Moreover,

MCNs can describe irregular algorithms that cannot be described in terms of

recurrence equations. This means that every block diagram can be converted

into an MC4 but not vice versa. The conversion amounts to duplicating the

block diagram several times (once for every iteration of the recursion) and

converting delay elements into direct connections between consecutive

£e duplicates, as in Figure 2-5.

The preceding discussion considered only block-diagrams that correspond

to sets of recursion equations. Such diagrams always consist of delay

elements and memoryless operations. This means, of course, that only block-

diagrams whose blocks represent finite-state machines can be converted in a

straightforward manner into an MCN. Any other block-diagram has to be first

converted into a state-space form (i.e., every block has to be represented

by a state-space model or a combination of such models) before it can be

- converted into an MCN. Thus, in particular, any signal-flow-graph with
rational transfer functions can be transformed into an MCN.

The correspondence between block-diagrams and MCNa provide a simple

test for the executability C- computability) of algorithms represented by

* block diagrams.

23

a. Block-Diagram

X0 YO 3.

xl

b. Nodular Computing Network

Figure 2-5. The Correspondence Between Block-Disgrama and Mala

24

Esecutpbilit Test

A finite block-diagram (or signal-flov-Sraph) whose blocks are

characterized by delay elements and memoryless maps is executable if, and

only if. the directed graph obtained by deleting delay elements from the

diagram (or equivalently, by setting z - 0 in the transfer functions) is

acyclic.

Proo0f:

Since delay elements are causal, they can never give rise to cycles in

the corresponding MC0. In other words, since all operations in the i-th

- iteration temporally precede all operations in the (i+1)-th iteration, the

only cycles the 104 representation of a block-diaSrm may have must be

contained within a single layer, corresponding to a single iteration. A

single layer of the 1CN is obtained by rmoving all delay elements from the

-" block-diagram.

The test not only establishes the executability of a given block-

diagram but indicates how to transform non-executable networks into

executable ones. Consider, for instance, the network in Figure 2-6a. It is

non-executable if (-) 0 0, because a cycle exists in the network for

z =. However. the IM transfer function can be realized by the network

in Figure 2-6b, which is executable.

* 2.5.2 Datg-Flow-Graphs and petri-Net-

The 1C0 it. clearly, a data-flow-graph (181 with the additional

constraint that only one token is placed at every input of the network, and

consequently, only one token eventually appears at every output of every

processor. Thus. an 1N0 is n t by definition. In spite of this

25

VV

b. Equivalent Executable Network

Figure 2-6. Transformation of a Non-Executable Network

into an Equivalent Executable One

26

D7

observation every data-flow-graph (safe or unsafe) can be converted into an

SCN, as long as every firing of a vertex in the flow-graph removes one token

from every input line and adds one token to every output line. This

constraint implies that the data-flow-graph can be converted into a block

*diagram involving only delay elements, advance elements and memoryless maps.

This block-diagram can in turn be converted into a (not necessarily

executable) MCN. The executability condition, when transformed back to the

data-flow-graph domain becomes a cycle sum test, as described in [19].

*Petri-nets are more general than data-flow-graphs. They allow two

*different kinds of vertices, known as places and conditions. Conditions

correspond to our concept of processors, while places are combinations of

multiple sources and sinks and thus have no counterpart in the MCN model.

Petri-nots whose places have at most one input and at most one output are,

in fact, data-flow-graphs (also known as marked graphs [20]) and can be

converted into MCNs.

2.5.3 High-Level Programming Languages

Most high-level-language computer programs can be converted with little
difficulty into MOs. Each assignment statement of the program becomes a

processor in the corresponding MCN. Program variables are mapped into
network variables according to the following rules:

(i) Each program variable, say x, is mapped into several network
variables, denoted by zi p 12 etc.

(ii) An occurrence of a program variable x in the right-hand-side

of an assignment statement is mapped into the same network
variable x i as the preceding occurrence of the same variable

in the program.

(iII) An occurrence of a program variable x in the left-hand-side of
an assinment statement is mapped into a now network variable,
i.e., into 1t14 if the most recent occurrence was sapped into

27

Recursions (do-loops) are mapped into sequential compositions of identical

processors, each processor corresponding to one step of the recursions. The

mapping of conditional recursions ('if' and 'while' statements) is somewhat

move complicated and will not be described here. A separate technical memo

will be devoted to the details of converting computer programs and other

descriptions into MCNs, and vice versa.

The conversion of an MC4 into a computer program is straightforward:

Each processor is mapped into several assignment statements, and each

network variable is mapped into a program variable.

2.5.4 Summary

The preceding analysis has shown that MCQs are essentially equivalent

to computer programs, to block diagrams involving finite-state-blocks, and

to a subclass of Petri-nets (marked graphs). The major distinction between

1CNs and most other representations is the embedding of the notion of

executability into the 0N4 model itself. Thus, the only way to design non-

executable MCis is by the introduction of cycles in the network

architecture. Moreover, the test for executability is very easy to carry

out and can be included in any compiler for M10 representations. It is such

easier, on the other hand, to design malfunctioning Petri-nets or computer

programs, and much more difficult to detect the errors in the design. I -

2.6 FORMAL LANGUAGE REPRESENTATION OF MCNs

To facilitate the application of the MCN model to both VLSI hardware

design and software engineering it is necessary to develop a formal language

version of the model, which preserves the convenience and simplicity of the

graph-theoretic formulation. Such a formal language representation should

not include more information that provided by the network graph. In

particular, it should involve no details pertaining to the implementation of

the MC in a particular type of hardware. The matching between the

requirements of an MC4 model and the resources provided by a particular

machine (e.g., sequential computer, dataflow computer, programmable

28

wavefront array) should be carried out by the compiler, not by the

user/programmer. This will significantly simplify the coding phase of 0N4

K. models and eliminate most of the common programming errors.

To achieve the objective stated above the language should be capable of

describing the two ingredients of the 10N model, variables and processors,

and nothing else. It has to be a single assignment language, with each

IL variable carrying its own name. Only two types of statements will be

allowed: one for describing the interconnection between processors, the

other for describing the functional characteristics of each processor.

Regular interconnection patterns will be described by indexed loops. The

sequential order of instructions in a program can be arbitrary and has

nothing to do with the order of execution, which will be determined by the

compiler in accordance with the precedence relation of the 0N4, as well as

the available storage and computing resources.

I r The purpose of imposing such severe limitations upon the syntax of the

proposed language is to eliminate all flexibility in the translation of an

MCN model into a computer program. Decisions about the structure of the 0N4

model for a given signal processing problem have to be made prior to the

b coding stage. Decisions about allocation of storage to variables and

computing resources to computations have to be made after the coding stage,

and preferably, by the compiler. This means that the coding stage itself

can also be automated in the future, enabling the user to specify his

=L designs interactively by 'drawing' the 10N model on a computer terminal.

Several languages have already been designed for modeling of parallel

algorithms/architectures. Some of these focus upon the physical aspects of

hardware implementation and almost completely lack the functional

characteristics necessary to specify the algorithm. Others focus upon

functional characteristics with little attention paid to structure. Only a

few languages, like CRYSTAL (6], MDFL (7] and SIGNAL [231 maintain the

balance between structure and function. Our approach combines ideas from

these and several other languages with some unique concepts that emerged

from the research on 1CN models.

The principles underlying the construction of a formal language for 1CN

models are demonstrated by the following example

29

XI Y1 ZI WI

X22

Y2 Z2

Figure 2-7. The 104 'Example'

The corresponding 104 program is

104 EXAMIPLE (X1,Y1,Zl.W1; X2,Y2.Z2,12)

3KG IN

AN (X1,Y1;X2,ITE)

AN (Z1 9 11;V2.ZTEM)

AS (YTEN, ZTEM; Y2, Z2)

END EXAMPLE

PROC AN (ID Y;A,M)-

336 IN

A:-X+Y

END AN

PROC AS (X.Y;AS)

BEGIN

A: -X+Y -

306

END AS

The unique features of the language are:

1) Single assignment - each variable has its own name.

2) Modularity - each procedure is self contained and can be compiled
and verified independently of the other procedures.

3) Hierarchy - there are three levels of specification: (i) Networks
(MCN), which consist of another network or of atomic processors
(PROC); (ii) Processors (PROC), which consist of assignment

* statements; and (iii) Variables, which may be of the types commonly
used in conventional computer languages, and are used to construct
assignment statements.

4) Information hiding - the components of the M1N program unit are
specified only in terms of their inputs and outputs, without any
details about their internal structure.

5) Modifiability and localization - the inners of every program unit
can be modified without affecting the correctness of other units.
The correctness of the modified unit can be tested without
reference to other units.

Notice that the order of program units as well as the order of assignment

statements in a processor is immaterial. This is made possible by the

single assignment convention which associates one variable with every arc of

the corresponding 10N graph. The names of processors and networks, on the

U other hand, can be duplicated to indicate identical inner structure (e.g.,

there are two 'AN' processors in the network 'EXAMPLE').

A formal language representation of an MN model provides no

information about the order in which the computations implied by the model

will be executed. Following the precedence relation specified by the model,

the computations can be arranged in layers, or wavefronts. The computations

belonging to one layer can be executed in an arbitrary order, or even all in

parallel. On the other hand, the execution of the (i-1)-th layer must

precede that of the i-th layer. The reformulation of the MCN model in terms

of layers, which was introduced in Section 2.4, emphasizes the sequential-

parallel nature of every 304 model, and serves as an intermediate step

between the network-type character of the 1CN model and the purely

sequential nature of conventional computer languages. This wavefront

representation also assists in determining variables that can use the same

31

storage area, and in allocating physical resources to computations when the

number of available processors is less than that required for the fully

parallel execution of a given layer. Thus, the transformation of an N04

model into a layered format plays a central role in the compilation of N ,

programs for execution on a specified machine.

2.7 SUMMARY

A unified model for multilevel description and analysis of parallel

algorithms and architectures has been developed. The model is general

enough to describe any computational algorithm and to explicitly exhibit its

parallelism.

The basic descriptive tool is a precedence graph, which indicates all -

possible implementations of the algorithm in either software or hardware. A

simple structural condition (no cycles in the graph model) guarantees that

the corresponding algorithm is executable. Different implementations of the

same algorithm correspond to different orderings of the vertices (processing

elements) of the precedence graph. Translation of software programs, data-

flow graphs and z-transform descriptions of algorithms/architectures into

precedence graphs and vice versa is easy to carry out.

The precedence graph approach clearly demonstrates the fact that

storage (memory) requirements are determined by the implementation chosen

for an algorithm rather than by the algorithm itself. Thus, the model of a

single computing cell need not include storage at all. The most general

cell is therefore a multiple input, multiple output map, viz.,

Y - f(U, 0)

where U denotes inputs from other cells, 8 denotes parameters, which

may be locally stored in the cell, and Y denotes outputs. A cell is

called:

linear - when f is linear in U (but not necessarily in 0)

time invariant - when parameters are time-invariant

32

Notice that a cell may be. in general, nonlinear and time-varying. iowever,

it is always causal.pP
An actual hardware implementation of a cell involves also a delay of

the output signal Y, consisting of a computation delay (the time required

to compute Y once U is available) and a propagation delay (the time

required for the output signal Y to reach its destination). The analysis

of such delays and their effects upon the throughput of the 0N4 is presented

in the following section.

3-*

- -

L.•

L 33

I! 'a

6

I

p

a

ml
S

A.

i A-

p

I

t £

3 34 6

r

SECTION 3

STRUCIRAL ANAYSIS OF HCNs

I..'

The notion of execution, defined in the previous section, provides

several quantitative characterizations of the MCN architecture. In

particular, it can be used to number the processors of an MC4 and to

introduce concepts of dimensionality. A refinement of the notion of

execution leads to time schedules and to the formulation of composition

rules for execution times. Thus, the objective of associating a unique

execution time with every output of an MCN is achieved. The third

objective, that of associating a unique measure of complexity with each ICN,

has yet to be accomplished. Currently there is no consensus even upon the

measure of complexity for a single processor, let alone for a network of

processors. Some progress has been made in characterizing complexity in

terms of 'area,' but more research is required before commonly-accepted

rules for composition of complexity can be formulated. For this reason the

topic of complexity will not be considered in the sequel.

3.1 NUMBERING OF VARIABLES AND PROCESSORS

The concept of execution, which was defined in Section 2.3. defines a

numbering E(x) on the variables of an MN, viz.,

xsSi < E(x) i (3.1)

Since the partitioning (Si and the numbering E() determine each other

and convey equivalent information, we shall call the function E() itself

an execution. Several variables may share the same value of E(), which

means they belong to the same level Si . If each level of an execution

contains exactly one variable the execution is called sequential. The

function 9(s) defines, in this case, a sequential ordering of the

.35
- - - - - --

variables and of the processors comprising the NCN. The numbering of

variables determined by an execution E() is consistent with the

precedence relation since we clearly have

E(x) + 1 max (E(y); y a a(z)) (3.2)

y --e
Similarly, we can define a numbering of the processors by

E(p) :-max (E(z); x a I (p)) (3.3)

The value of E(p) indicates the earliest instant at which all inputs of

the processor p become available. We can also define a precedence

relation for processors, viz.,

q ->p

if there exists a directed path from q to p. This relation, in turn,

determines the ancestry set a(p) of each processor by J-

a(p) :- (q; q a P. q-> p) (3.4)

It can now be seen that an analog of (3.2) holds for the numbering of

processors, viz.,

E(p) _ 1 + max (E(q) ; q g a(p)) (3.5)
q

Since a typical KCN has fewer processors than variables, the numbering of

processors is a more convenient tool for structural analysis of an MCN.

3.2 DINENSIONALITY AND ORDER

A family of sequential executions {E1() on a given NCN is called

representative if

36 .9

q a a(p) (=> E (q) (E(P). 01I i (3.6)

Notice that a representative family can never consist of a single execution

(except In the case of a purely sequential N) because there exist always

two processors q, p such that E(q) (E(p) even though q does not

i precede p (nor does p precede q). The following result shows that
p

every MCN has at least one representative family.

Theorem 3.1

The collection of all sequential executions of a given XCN is a

representative family.

Proof:

3 By the definition of execution

q a a (p) -) E(q) (E(p)

for every execution (sequential or not). To prove the converse assume that

() is the collection of all sequential executions, and that for some

processors p. q

E1 (q) (EI(p), all i

Clearly p cannot precede q, but they may be incomparable. In this case

there exists a non-sequential execution E() such that

1(p) -(q)

Since every execution can be transformed into a sequential one by

arbitrarily ordering the variables in each level, it follows that c can be

converted into a sequential execution, say Eo0 such that

37 .

F (q) > E (p)0 0

This, however, contradicts the assumptions. Hence, p. q cannot be

incomparable and we must have q e a (p).

Uism
A representative family with the smallest number of members will be

called a basis (it need not be unique). The cardinality of bases is defined

as the dimensionality of the MGJ in consideration. The members of a basis

(Ei()I define a coordinate basis for the network, such that the

coordinates of a processor p are {E (p), E2 (p), E (p)). Notice that

the dimensionality of a network is bounded below by the dimensionality of

all its subnetworks, so adding long chains of processors to a 2-dimensional

network cannot reduce the overall dimension below 2 (Figure 3-1).

Every basis ol in Xa Jetermines a unique non-sequential execution

obtained by ordering the processors according to the sum of their basis

coordinates. For the example of Figure 3-1 this execution is

(1), (2,3) (4) (5) . . . (n)

The order of a basis is defined as the number of variables in the largest

layer of the parallel execution determined by the basis. For the example

above the order is 2 since there is a set of 2 processors in the parallel

execution. Since an N(4 may have many bases it has no unique order.

Moreover, each execution E (not necessarily associated with a basis) has

its own order, defined by

ord (E) : max (p; E(p) i) (3.7)

Executions can be implemented in hardware by mapping each layer into a

single iteration, with all the processors in the layer implemented in

parallel. The order of an execution, which is the number of processors in

the largest layer, is therefore a measure of the hardware complexity of such

an implementation.

38

233j

4 *

* 5 -

*Figure 3-1. Example of a 2-D Network. Mist basis is formed by
the executions 1,.3o4*5p.... a and 19 3 v2 D4 D5 D**&n

39

Once we have coordinate bases at our disposal we can apply metric

arguments to the representation of an MCN. For instance, we can define

distances between processors and introduce the.concept of local

communication between processors in a rigorous manner. However, more

research is required to establish the properties of metrics defined by

coordinate bases; in particular, it is not yet clear how the choice of the

coordinate basis affects the metric.

3.3 SCHEDULES, DELAY AND THROUGHPUT

The execution of an MN represents only its precedence relation and - "

does not take into account the actual time required for execution. The

evaluation of each variable requires a certain amount of execution time when

implemented in hardware. Since each output of a processor may involve a

different execution delay, execution times have to be specified for arcs of

the precedence graph rather than for the vertices. The execution time

associated with a variable x will be denoted in the sequel by T(x). This

is the time required to evaluate x from its immediate ancestors

(= parents), i.e., from the variables that serve as inputs to the processor

whose output is the variable x.

The incorporation of time delays into the notion of execution results

in a schedule, which is formally defined as a function v(x) that satisfies

the constraint

v(x) .T(x) + max (v(y) ; y a a(x)) (3.8a)

y

and is zero for the network inputs, viz., -

x a XI (P) T= t(x) = 0 (3.8b)

This constraint guarantees, in particular, that the parents of x will be

available at time -c(x). Thus, schedules . refinements of executions. In

particular, with every execution VC) we can associate a schedule v()

by choosing

-(z) max ((y) + T(x) ; E(y) E 3(x) -1) (3.9)

40

Such schedules are, generally, non-minimal in the sense that some operations

have all their inputs available before their scheduled execution time, i.e..

(3.8) holds with a strict inequality for such operations. A schedule which

satisfies (3.8) with equality for every z c X is called m nial.

Minimal schedules are important because they characterize the fastest

executions of a given MCN. This property is made explicit by the following

result.

Theorem 3.2

Every structurally finite MCN has a unique minimal schedule v(). The

minimal schedule satisfies

)-(x) (310

for every x a X and for every schedule T().

Proof:

Since by Theorem 2.1 a structurally finite MCN has a countable number

of variables, the result can be established by induction. Thus, let S be

a subset of I that is closed under the ancestry relation, namely for every

x a S we must have a(x)C S. Assume that S has already been assigned a

minimal schedule I() and that this schedule also satisfies (3.10).a-

Choose a variable y not in S and consider the augmented network

determined by S U c(y). We need to show that i() can be extended to

this augmented network and that it will satisfy both (3.8) and (3.10) The

schedule T() is now extended to a(y) in the following manner:

(i) Assign v(&) 0 to every z a a(y) that has no ancestors.

(ii) Identify the collection of variables for which all ancestors have
already been assigned a schedule (this set is never empty).
Assign to each one of these variables the schedule

(z):- T(z) + max (i(w); v a a(s))

41

Fd

For every w e a(z), either i(w) 0 or w e S. so that
x(w) < v(w) for any schedule T(). Since any schedule v()
has to satisfy (3.8) we obtain

-r(z) 2 T(z) + max IT(w); w a a(z))
w

T(z) + max (i(w); w a a(s)) "(z)

V

which proves that (3.10) is preserved in this step.

(iii) Augment S. viz.,

S := SU.J(y)

and go back to (11).

The repeated application of this procedure results in the assignment of

i(x) to every variable of the MCN. The resulting schedule is minimal,

i.e., it satisfies (3.8) with an equality, unique (by construction) and also

satisfies (3.10).

As with executions, we can also define schedules for processors. The A

schedule of a processor p a P is defined as

-C(p) :m max (s(x); x a St(p) (3.11)
x

in analogy with 3.3. It is the instant at which all input variables of the

processor become available. Some of the inputs of the processor may become

available earlier and need. therefore, storage or buffering until they can

actually be used. A variable x is called critical with respect to a given

schedule T() if

X i =-> i(x) - r(p) (3.12)

and non-critical otherwise. Thus, the schedule of each processor is

determined by the schedule of its critical inputs. Since non-critical

variables require storage the general objective of scheduling is to reduce

the total storage requirements.

42 -4

-*--.**~ ..- .* rf .

Storage is measured by the product of volume (e.g., the number of bits,

to be stored) and duration. The duration of storage for a variable

I a Xi(p) is the difference between the time it becomes available and the

" most recent instant it still needs to be available, i.e..

* max v(ry) - T(y); y e X0 (p), 2 -> y) - (x)

This interval will be minimized if we choose the difference v(y) - T(y) as

short as possible. In view of (3.8). we have to choose v(y) - T(y) - v(p),

namely-the minimal schedule also minimizes the storage requirements of the

network. The minimal schedule still has both critical and non-critical

variables. However, only the critical ones determine the schedule, as

demonstrated by the following result.

Every processor in a structurally finite XCN is connected to a network

input by a finite path whose variables (arcs) are critical under the minimal

schedule.

Prof

The definition of a critical variable implies that every processor has

at least one critical input variable. The critical path is obtained by

tracing back through the critical inputs of the preceding processors. Since

the ancestry of each processor is finite, this procedure terminates in a

*finite number of steps when the path reaches a network input.

4

o 43

Corollary_2.J

The minimal schedule of a processor equals the length (sum of

processing delays) of a critical path that connects a network input to this

processor.

The corollary implies an interesting principle for the physical design

of hardware implementations--critical paths need to be considered first so

that the length of the physical connections along the path can be minimized.

Non-critical paths can accommodate extra propagation delays and can, there-

fore, be designed later.

The construction of a schedule is based upon the assumption (3.5b) that

all MCN inputs are available at the very beginning. Thus, a zero schedule

was assumed in (3.8) for every MCN input, i.e.,

Xi(P) a=> X(M) = 0

J.
This is, however, inessential, since many of these inputs will not be

required until much later. The scheduling of the network inputs can be

modified, once a schedule v() has been determined, to reflect the

earliest instant they are required in the execution. Thus, for every

x a Xi(M redefine the schedule of the inputs to be

X a 1l(P) a=> (>) :- T(p) where x a 1I(P) (3.13)

and no buffering, or storage, of the inputs will be necessary. This is

particularly important if not all the inputs can be made available In the

%ame instant, e.g., in real time processing of time-series. Notice that

this modification in the scheduling of inputs does not affect the schedule

of any other variable in the network. This is so because only non-critical

input variables are adjusted. The meaning of (3.13) is that all network

inputs are made critical to reduce the storage requirements of the network.

The schedule of output variables is commonly known as ie. The delay

of x is the time hat has elapsed from the moment some variable in a(z)

44

becomes available until the moment the variable z itself becomes

available. This is. clearly.

-C (I) -min (c(y); y a nL(z))

* and in many cases it will be equal to TOz). In typical signal processing

applications the delay of outputs usually increases without limit as more

and more inputs are applied to the processor and more and more outputs are

evaluated. In such cases one is interested in the rate of output

evaluation, commonly known as throughput. rather than in the delay of the

outputs. The throughput is roughly the number of CN outputs that are

evaluated in a unit of time. Since this rate may vary, we need a more

rigorous definition based on the concept of schedule.

Every schedule determines a temporal ordering of the MCN variables (it

need not be sequential), which is consistent with the precedence relation

between variables. In order to quantify the rate at which output variables

are evaluated, we define the output counting function

-I
N () :- number of elements in the set (3.14)0

(y; y a I (P), M(y) T r)
0-1

The input counting function can be similarly defined, viz.,

Ni(e) : number of elements in the set (3.15)

(y. y XMi(P). r(y) (T)

We can now plot the counting function N(T) as a function of T for both

the inputs and the outputs (Figure 3-2). The functions Nt(T); N0 (T) are,

of course. staircase functions (indicated by broken lines in Figure 3-2) and

can be upper-bounded by a pair of continuous, piecewise-linear curves

(indicated by the solid lines in Figure 3-2). The slope of these

45

N~r

Input Output
6 -

5

3

2 -

Figure 3-2. Input and Output Throughputs of an M01. .

46

curves (which are always strictly monotone increasing) is a measure of the

I rate of information flow into the network and out of it. and will be called

the input and output throughput, respectively. A schedule is called reaular

when both its input and output throughput are periodic with the same period

(and, in particular when both throughput* are constant). An MCN is called

temuoralll-regular when its minimal schedule is regular. Many temporally- .

regular networks have equal input and output throughput&, but this need not

be true, in general.

3.4 SPACE-TIME DIAGRAMS

The continuous-time character of the schedule is best demonstrated by

introducing a time-axis into the graphical description of an MCN. The

vertices are arranged so that the vertical displacement from the top of the

diagram to the location of any given vertex p indicates, on an appropriate

scale, the value of the schedule T(p) for this vertex (Figure 3-3. compare

with Figure 2-1). This space-time, diagam has several interesting

properties:

(1) All arcs point downward.

j * (2) The vertical displacement of an arc indicates the total execution

time associated with this operation, including any buffering time
that may be required beyond the actual execution time T(x).

(3) Changes in local execution times are easily accounted for by

shifting the corresponding vertices up or down along the time
scale. The global effects of such shifts are clearly depicted by

the diagram.

(4) Non-executable HCNs (with zero or negative execution times) can
still be described by the diagram. This is useful to establish
equivalence between various descriptions of the same 0N4 (e.g..

precedence graphs and signal flow graphs).

47

3i

p 4

T ime

* Figure 3-3. Introduction of a Time Scale into the Architecture

I 48

The collection of processors (vertices) with the same schedule form an

I isochrone.

The execution of a network according to a.given schedule may now be

interpreted as the propagation of a sinile wavefront of activity through the

architecture. The location of the activity wavefront at any given instant

Sg is indicated by the corresponding isochrone. Observe that the isochrones

are parallel straight lines (or parallel planes if the precedence graph is

described in a three dimensional space) and do not intersect. Also notice

that the inputs and outputs of a temnorally-regular network are evenly

distributed in time (i.e., along the vertical axis of the space-time

diagram). These properties are particularly significant for the analysis of

iterative NOs, which is carried out in Section 4.

As an illustration of the equivalence between various descriptions of

the same MCN consider the block-diagram of an IIR filter (Figure 3-4a). The

corresponding MCN (Figure 3-4b) can be rearranged in many ways without

modifying the architecture of the network. However, if Figure 3-4b is

interpreted as a space-time diagram (with time being the vertical axis),

j -j such modifications result in different schedules and also in different

block-diagrams. In particular, the delay elements can be moved to the lower

path (Figure 3-S) or split between the two signal paths (Figure 3-6). The

latter version is the only one that can be implemented in hardware because

- L it contains only downward-pointing arrows; the other two versions

require instantaneous evaluation of each variable associated with a

horizontal arrow. The third description makes it also clear that the time

interval between successive application of inputs is equal to two delay

units. It is also possible to associate unequal computing times with the

forward and backward propagation through each block. After all, the forward

path only feeds information through the block while the backward path

involves a multiply-and-add operation. The resulting space-time diagram

(Figure 3-7) has delays TfV Tb associated with the forward and backward

paths, and the input interval is clearly Tf * Tb. Notice that the block

diagram description involves two different delay blocks: This is known as a

sultirate implementation (8]. The throughput rates are, nevertheless, equal

to (Tf * Tb) -1 for both the input and the output.

The same technique can be applied to analyze the several proposed

systolic-array-like implementations for matrix multiplication: the

49

hexagonal array of H.T. Kung (5). the improved hexagonal array of Weiser and

Davis [4], the wavefront array processor of S.Y. Kung (7] and the direct

form realization of S. Rao [10]. Details are provided in Appendix E.

The analysis of the previous examples makes it clear that the common

MCN architecture shared by all the representations of a given processing

system induces certain invariants. For instance, the total number of

outputs of each processor remains invariant, even though in some

representations some of these outputs are connected to a local memory rather

than to a nearby processor (Figure 3-8). The same is true for the total

number of inputs of each processor. Notice that the blocks in Figure 3-8a

are still the same as in Figure 3-4a. including the orientation of paths

(one forward, one backward). On the other hand, the roles of the blocks are

quite different; in particular, outputs are obtained from the local memories

rather than from the left-most block alone, as in Figure 3-4a.

5

I-I

Block 0 Block I Block 2

Inu

a 2

a. Block-diagram

b. Space-tine diagram

Figure 3-4. Schematic Description #1 of an 11R Filter

51

Input N

Block Block 1 Block 2

OutputD

a. Dlock-41&Sram

522

Input Bok1B c
Block 00

Output -L-

a. Block-dia~ram

IL- 0

b. Space-time diagram

Figure 3-6. Schematic Description #3 of an 11R Filter

53

Input f HO T Ni

Block0 Blok I Bock

OutpU14- of

a. Blck dagra

0-
0-

TI

Tf

Tb 0

011

b. Space-tim. diagram

Figure 3-7. Nultirate Implementation of an Ilk Filter (T f (Tb)

54

a. Block diagram

0 0

I-If

b. spc-tm S igr

Figure 3-8. Schematic Representation of TI Filter Involving Local Memory

'5- 55

3.5 SUMMARY

Techniques for analysis of pipelinability. schedules, and throughput in 4

systolic-array-like configurations have been developed based on the MCN

representation of parallel algorithms/architectures. Architecture

evaluation was also based on graph theoretic properties of the M10 model:

The dimensionality, degree of parallelism, and throughput of a given

architecture are all determined by analysis of its precedence graph.

The major difficulty in the analysis of computing networks lies in the

translation of low-level input-output relations to high-level ones, and vice

versa. We have shown that the problem reduces to the factorization of the

global (high-level) input-output map into a product of purely parallel maps,

corresponding to the concept of vavefront propagation in the network. More

specifically, the global input-output map is a sequential composition of the

maps corresponding to the layers of an execution.

-a _

56 -1_

SECTION 4

ITERATIVE AND COPLETELY REGULAR NETWOM

4.1 ITERATIVE MQCs AND HARDWARE ARCHITECTURES

An MCN is called iterative when it can be described as a sequential

composition of identical subnetworks, i.e.,

astwork - .

Each of the identical components (will be called an iteration. One

reason for this name is that the MC can be executed by implementing a

single component Z in hardware and simulating a sequential composition of

such components by spreading the execution of the components in time. The

3 motivation for studying iterative MCNs is that most signal-processing

algorithms and, in particular, all systolic-array-like architectures can be

described by such networks. Observe that every block-diagram representation

corresponds to an iterative M10. The iterative structure induces certain

regularity constraints upon the 0N1 which lead to a simplified

representation.

The minimal schedules of iterative networks are, cleasly, periodic with

the same period for input and output schedules. Thus iterative MCNs are

temporally-regular. In addition, they are functionally-reaular in the sense

that each iteration involves the same function J. Consequently, their

properties can be determined by analyzing a single iteration. For instance,

the entire network is acyclic (hence executable) if a single iteration is

acyclic. In particular, the executability of z-transform representations of

iterative MCqs is tested by removing all separators and examining the

remaining directed graph for occurrence of cycles (see also [9]).

. Similarly, the (minimal) schedule of the network can be determined by

considering a single iteration.

57

rU

Iterative MCNs are commonly described by recursion equations (or

equivalently by z-transform diagrams), data-flow diagrams (marked graphs),

or by 'do-loops' in high-level programming languages. While precedence

graphs of iterative networks still indicate all possible executions,

recursion equations restrict the choice of execution to one or at most two

possibilities (Figure 4-1). And while precedence graphs avoid the pitfall

of non-executable iteration by explicitly describing each iteration as part

of an executable (acyclic) precedence graph, data-flow diagrams contain

cycles which may cause the entire M(N to be non-executable.

Since all iterations are identical, the schedules of every two

consecutive iterations differ by the same constant, which we shall call the

input interval. The input interval is the period of the input schedule or.

equivalently, of the input throughput, as well as of the output schedule

(recall that iterative MCIs are temporally regular). It determines an upper --

bound on the rate at which inputs are applied to the network (lower rates

are permitted, but require additional buffering).

The time-space diagram of an iterative MCN corresponds to its minimal

schedule and is, therefore, periodic. It is important to notice that the

period (= input interval) is, in general, shorter than the time required to

complete the execution of a single iteration (- the iteration delay). This

means that hardware realizations of the MCN can be pipelined: New inputs

can be applied before the processing of previous inputs has been completed.

The functional regularity of iterative MCNs implies that they can be

implemented in special purpose VLSI hardware by mapping the precedence graph

of a single iteration directly into silicon. Each processor is mapped into

a cell ('processing element') and precedence relations are mapped into

interconnections between cells. Neither translation nor hardware

compilation are required to accomplish this mapping since the hardware

architecture is an exact image of a single layer of the network

architecture. An execution is now interpreted as the propagation of a

sequence of wavefronts through the hardware rather than the propagation of a

single activity wavefront through the iterative MCN (Figure 4-2). The time

spacing of these wavefronts equals the period of the underlying MC4 minimal

schedule.

58 0

r

* 9.

599

a. Parallel lput Aiplioaton
..

/-

. b . 3 q u e t l l uI p u t A p p l i c a t i o n
-.

, lFiure 4-1. Iquivaleat Pipelned Ezeoutiona of an NCd.

L
59

Since a single layer of the NCN is used to 'simulate' the entire

network each processor is activated many times and each arc of the hardware

architecture corresponds to a time-series of variables rather than to a

single variable. This raises a design problem of a new kind: It is

necessary to guarantee that variables do not disappear before they have been

used to evaluate their successors. There are three different solutions to

this problem:

(1) Iterative execution: A new iteration is initiated only after the
execution of the preceding iteration has been completed. This
means that the input interval is extended (by buffering of
intermediate results) to the length of the iteration delay, and
the time-overlap between iterations is completely eliminated.

(2) Scheduled execution: The (minimal) schedule of the network is
determined in advance and execution is carried out according to
schedule. Buffering is provided to guarantee the availability of - -.

inputs to processors on schedule (only non-critical variables need
to be buffered).

(3) Self-timed execution: Processors are activated as soon as their
inputs become available. Acknowledgment signals ("hand-shaking')
are used to guarantee the correct transfer of data between.- .
processors.

While scheduled execution offers the shortest execution time and requires a

fairly simple control system, it is extremely sensitive to scheduling

perturbations. Such perturbations, which are caused by clock-skewing and 4

local variations in execution times, may result in loss of synchronization

between cells and a complete failure of the system. Iterative execution is

insensitive to scheduling perturbations and requires a very simple control

system, but wastes processing time since the hardware is idle most of the

time. Self-timed execution provides a nice tradeoff between these two

extremes: Its execution time is only slightly longer than the theoretical

minimum achieved by scheduled execution; and the control system it requires

has about the same complexity as the timing system for scheduled execution.

It is interesting to observe that the conditions for self-timed execution

(16], (17] coincide with the concept of admissible composition, which was

shown to be the necessary and sufficient condition for executability in

general. Thus, every NCI can be implemented as a self-timed system. -

60 1

-~~~~ ~~~ -- , -- - - -

b . Narwr rcietr Perspective r

Figure 4-2. Execution Interpreted as Activity Wavefront Propagation'

61 ...

The notion of self-timed execution suggests the introduction of self-

timed block-diagrams. These are obtained by removing the delay-elements

from a conventional block-diagram and replacing them by direct connections.

The hardware implementation of such self-timed diagrams is straightforward

provided two simple rules are obeyed:

(i) Each cell is activated as soon as all its inputs become available
and deactivated as soon as all its outputs have been evaluated.

(ii) Each input variable is accompanied by an acknowledgment line.
Each input port (sink) acknowledges the arrival of a new input
variable to the processor that evaluated this variable. The --

acknowledgment is sent when the processor connected to the input
port becomes activated.

These rules assume that each cell is provided with sufficient memory to

store its output variables until they become acknowledged. -

The acknowledgment of inputs associated with self-timed implementations

can (and should) be reflected in the space-time diagram of the network.

Acknowledgment signals are just one more set of variables in the network,

and are represented in the space-time diagrams by arcs, as any other -

variable. For instance, a cascade connection of (identical) processors ja

(Figure 4-3a) has an input interval of v + T2 where v1 is the execution
1'. 2 1

time of the processor and :2 is the delay between the reception of an

acknowledgment signal from the subsequent processor and the transmission of

an acknowledgment signal to the preceding processor (Figure 4-3b). The

interval v2 includes the propagation time through the processor and the

connecting wires yLus the time required to carry out checks on the input

data (parity, error detection, fault detection, etc.). Notice that the need

for explicit acknowledgment can be eliminated in many cases, e.g., when .

there is an information carrying path along the cascade in the backward

direction.

The horizontal dimension of space-time diagrams can now be interpreted

as hardware: Processors located along the same horizontal line

(isochrone) represent computations that need to be carried out

L &

62

a. Self-Tined Block-Diagram

.N1

INIS

Figure 4-3. Propagation of Acknowledgment Signals (AS) is
Self-Time4 Systems

63

simultaneously and must, therefore, be implemented in parallel hardware. We

shall adopt the convention of interpreting the vertical dimension of space-

time diagrams as pure time: Processors located along the same vertical line

will represent computations that are carried out by the same processing

element but during different (non-overlapping) intervals of time. Thus, for

instance, the MCN of Figure 4-4 can be implemented in hardware with four 7.

processing elements (Figure 4-4b). Each vertical column of processors in

the space-time diagram of the M(C (Figure 4-4a) is mapped into a single

hardware cell; connections between columns are mapped into physical

connections between cells and connections within columns are implemented by

locally storing intermediate results inside the appropriate cells.

Self-timed or scheduled execution is, indeed, faster than iterative

execution only if the input interval is shorter than the execution time of a

single iteration. An implementation of such an execution will initiate a -

new iteration before the execution of the previous iteration has been

completed. Such implementations deserve to be called pipelined. Thus,

iterative executions are never pipelined, while self-timed (or scheduled)

executions are pipelined only for pipelinable MCNs.

Notice that the input interval is uniquely defined for every

temporally-regular 1N0, but the iteration delay (= execution time of a

single iteration) depends upon the partitioning of the 1N0 into iterations.

Since this partitioning need not be unique, an iterative MCN may have

several hardware realizations, each with a different iteration delay. Thus,

pipelining is primarily a property of a given hardware realization. An 1NI

is considered vinelinable if it has at least one pipelined realization.

Pipelinability is most frequently associated with completely regular NCNs

(= systolic-array-like networks). The connection between complete -

regularity and pipelinability is discussed in the following section.

6_
64

a.SaeTm iga

b. Spf-Tie BoDiagram

Figure 4-4. Hardware Implementation of an Iterative MCN.

65

0 2 4

S.50

b. Intrleavd For

Figue 45. Rsouce harig b Intrlevin

'S 66

. 7

4.2 COMPLETELY REGULAR 04 s

A completely regular M10 is one that can be represented by a regular

multidimensional grid, and in which all input-output maps associated with

the vertices are identical. Thus, the vertices of a completely regular 1CN
n

can be mapped into points of the multidimensional grid Z in the

n-dimensional Euclidean space Rn. where Z denotes the set of integers;

the arcs of a completely regular MCN become vectors (n-tuples of real

numbers) representing the directed straight lines connecting points of the

grid Zn . Clearly, not all points in Zn correspond to vertices of the

N4. Those that do determine the domain of the 1CN in Zn. The

requirement of complete regularity translates into the statement that the

vectors (arcs) emanating from any point (vertex) in do not depend upon

the choice of vertex. Consequently, the entire 1CN is characterized by: .

1i) the set of dependence vectors Id1i emanating from a single

vertex;

(ii) the domain r z2;

and

(iii) the input-output map f

f: (xI ) -- > (Yls ... Yp

associated with every vertex in the domain r.

*: A curious consequence of this definition is that the input-output map f

- has the same number of inputs and outputs, since the number of arcs

emanating from a point in r is always the same as the number of arcs
converging to a point.

Not every set of dependence vectors (di) determines a valid 1CN. For

instance, the directed graph representing an 10N has to be acyclic. In

terms of dependence vectors this means that it is impossible to find

positive integers (ki) such that Tkid 0. Another requirement is

67

that the ancestry of every vertex v B r (i.e., the set of all points from

which v can be reached) has to be finite. This constraint is trivial if

r is a finite set; however, if r is infinite (as is often the case with a

signal processing algorithms) this constraint implies that r has to be

bounded in the directions (-d).

In the sequel we shall focus upon completely regular MCNs in Z$,

because such MCNs correspond to space-time representation of planar

systolic-array-like architectures (see [23] - [31]). We shall impose the

constraint of causality resulting from the association of 'time' with one of

3
the coordinate axes in Z and examine the flow of data through the

architecture in terms of the dependence vectors characterizing the Nl.

4.2.1 Supace-Time Reupresentations in Z

CNs in Z are characterized by 3-dimensional dependence vectors

(di), which we shall represent by row vectors of length 3. The collection

of all dependence vectors -

D := [d] (4.1)

forms a pxn matrix, which we shall call the dependence matrix. The

boundary of the domain r can always be described as a polyhedron. It will

be sufficient for our purposes to consider only convex polyhedra, and in

fact, only those that can be characterized in terms of the dependence

vectors (see Section 5.4 for a further discussion of this choice).

The interpretation of MCNs in Z3 as space-time representations of --

hardware architectures imposes the additional constraint of causality:

every dependence vector must have a positive time coordinate, since

computation and propagation of data cannot be accomplished in zero time.

Moreover, since data cannot propagate faster than the speed of

electromagnetic waves in metallic conductors, the directions of dependence

vectors must lie within a certain cone, the time-like cone in the space-time

continuum. By appropriate scaling of space and time coordinates we can

reduce this condition to the requirement

68

d [0 0 11 2 (4.2)

I which means that the third coordinate of di must be (an integer) larger or

equal to 1.

The association of time with the third coordinate of dependence vectors

allows us to express the finite ancestry condition in simple form. The

exclusion of ancestors that are infinitely remote from a given vertex in the

domain r is equivalent to the requirement that r be a subspace of the

positive half space of Z , i.e., the half space corresponding to non-

negative time coordinates. Moreover, since hardware must always be finite,

the spatial extent of r must be bounded. Thus, the only direction in

which r may remain unbounded is that of positive time, corresponding to a

* computation that continues indefinitely in time (e.g., a filtering of an

infinite time-series), but produces results (outputs) at regular intervals.

Vertices in r that share the same spatial coordinates are considered

as representing the same hardware processor at different instances in time.

* Regularity implies that such isospatial vertices are spread in time at

regular intervals. This interval, which is the same for all processors,

*m will be called the periodicity index of the architecture. The periodicity

- .index corresponding to a given dependence matrix D is the smallest

solution n of the equation

"L
AD x (0 0 11 (4.3)

where A is any row vector with integer (possibly negative) entries. To

prove this result we notice that AD is an integer combination of

dependence vectors; moreover, if v(xl,Yl,t1) and v(x2,y2 ,t2) are two

distinct vertices in r, then the vector connecting these vertices can

always be expressed in the form AD for an appropriate (possibly nonunique)

* - row vector A. If the two vertices share the same spatial coordinates, then

their interconnecting vector is colinear with [0 0 1], and so (4.3) is

* - satisfied for some Aw. Finally, the smallest temporal displacement is

obtained when % is minimized in (4.3). The periodicity index it can,

actually, be evaluated without an exhaustive search through all possible

Integer vectors of A that satisfy (4.3), as is demonstrated in Section

4.2.2.

69

. . . . -.

The most important attribute of the space-time representation of a

completely regular M(0 is the invariance of the NCN under coordinate

transformations in space-time. This is so because coordinate

transformations do not affect the interconnection pattern of the space-time

representation, and consequently leave the corresponding directed graph

unaltered. In the case of regular space-time representations it is

sufficient to consider the effect of linear coordinate transformations; this

is done in detail in Sections 5 and 6.

4.2.2 Snatial Prolection of 1(4s in Z3

The first two coordinates in a three-dimensional space-time can be

interpreted as physical space. When a space-time representation is -

projected into the plane formed by the first two coordinates, vertices

represent computing agents (i.e., processors) and arcs represent physical

interconnections (i.e., wires). The projection amounts to the truncation of

each dependence vector to its first two coordinates, viz., .

D : 0 1 (4.4)
0 0]

The truncated dependence matrix D ('a' stands for 'spatial') is usually -

sufficient to characterize the architecture, since we commonly assume that

each dependence vector represents a computation that requires a unit of

time, and consequently

D =D (4.5)

This assumption is violated only when D has a periodicity index x(D)) 1

and, in addition, D contains a dependence vector of the form [0 0 v].

This dependence vector is truncated to [0 01, so v cannot be recovered

unless v = w or v - 1. These, in fact, are the only two possible values

for v as explained in Section 6.4.

70 I

The truncated dependence matrix can be pictorially represented by a

conventional block-diagram such as Figure 4-5. Each truncated dependence

vector is represented by an arc with the appropriate spatial displacement,

while truncated dependence vectors of the form [0 0], which correspond

to local memory, are represented by self-arcs.

a. Block-Diagram Representation

D = 0 1 D -1 0
0 0 0 f

' " b. Dependence and Truncated Dependence Matrices

Figure 4-5. Example of a Regular Hardware Architecture

71

La

The truncated equivalent of (4.3) becomes

s - 0 (4.6) 4

so that every feasible choice of q corresponds to an undirected loop in

the 2-dimensional block-diagram representation. Thus, every feasible q is

obtained by considering all possible loops in the block-diagram

representation. If there are no self-loops on vertices, then D contains

no zero row and (4.5) holds. Consequently, by (4.3),

tD[O 0 11 -e l 1 . . . l t

so n is obtained by adding up the entries of A. This is, in fact, done

by counting each arc along the loop as I if it coincides with the

orientation of the loop and as -1 if it points in the reverse direction.

Since the smallest value of fr is required, only the shortest loops need to

be considered. We shall show in Section 5.3 that a never exceeds 3 and is

seldom larger than 1. -

4.3 MODULAR DECOMPOSITION OF MCN MODELS

The conversion of a given algorithm into an 1CN model is based upon the

assumption that the fundamental building blocks--the processors--are

implementable in hardware. This is indeed so if each processor represents a

few scalar operations, which can be handled by any contemporary computing

agent. However, signal processing algorithms are rarely specified in this - .

convenient form; most often they are represented by block-diagrams whose

blocks involve multivariable manipulations, and in particular, matrix

algebra. The construction of a computer program or a hardware

implementation for such 101. requires to decompose each multichannel

processor into a subnetwork of scalar processors. One way to achieve this

decomposition is by storing standard subnetworks for commonly used

operations such as matrix addition, multiplication and inversion in a
-A

library and invoke this information whenever the need arises. However, the --

experience with signal processing schemes indicates that better results are

72

' ' -?- ~ f

obtained by matching the method of decomposition to the structure of the

problem. By a Judicious application of the principle of modular

decomposition [32] we obtain completely regular MOCs which are perfectly

suited for implementation in VLSI, and have a much higher throughput than

those obtained by mapping matrix operations directly into parallel hardware.

There is, at present, no simple test to establish the applicability ofiL
the principle of modular decomposition to a given multichannel operation.

When the operation is linear in all its operands the necessary and

sufficient conditions for modular decomposability can be stated in simple

terms as described below.

4.3.1 Modular Decomposition of Linear Multivariable Filters

Let 1(z) be the transfer function of a multivariable filter with an

* equal number of inputs and outputs. Suppose that the inputs have been

aggregated into three multichannel inputs x, u1 , u2 and the outputs have

been respectively aggregated into w, y1, y2 (Figure 4-6). Thus,
.1 1 (z)Z(z)

C2:() B (z) u (z) (4.7)

Iwz J u 2(z)

. Suppose that there exist transfer functions B (z), H(z) such that

) [(4.8)

where p is the number of channels in u1 and q is the number of channels

in U2 . Then the filter can be, clearly, decomposed in the form described

by Figure 4-6. Conversely, if such a decomposition exists, then (4.8) will

hold. Thus, the existence of the factorization (4.8) is a necessary and

sufficient condition for the decomposability of a multivariable filter as

described by Figure 4-6.

A_ 73

". ,-. -.

U1 y1

U2 2

a. Before Decomposition

U 2 2()Y

V v

b. After Decomposition

Figure 4-6. Modular Decomposition of a Linear Multivariabi. Filter

74

*,- - -

To make the decomposability condition more explicit we sball describe

the transfer functions nl(z) in terms of blocks, viz.,

1(z-N) - , = 1,2 (4.9)
WCi() D(z)]

.oc

The corresponding decomposition of 1(z) yields, via (4.8). (4.9) the

identity

Hii~) 1(z) 113(z)] A1(z) B IzW 01

1(z, .. 21() ,22 (z) ,23(z) A2 (z)C1 (z) A(z)D,(.) 22 2 (z)

L H (z) W (z) H(z) C (z)C (-) CW(z)W (z) ()
31 32 3 3 [2 1 2 2 2

14.10)

This means that some elements of R (z) can be uniquely determined from

those of the given H(z), for instance

A1 (z) = l (z), D2 (z) - 3 3 (z). etc.

i- .Since the blocks B z), C (z) are square (while Ait Di need not be

* square), we also obtain, assuming nonsingularity of square transfer

L functions

A1z) 2z)C 1 z) (4.11a)
2 B21 1

which implies

L (z)C 1 1Z)D(z) - 2 (z) (4.11b)

Similarly

c(z)H 1z z) (4.12a))

2 3 1 () 1

which implies

• f75

H 31zWC I I(z))2(Z (4.12b)

"31 1) D1 32(z)

which means that for all z

rank Sn

B 31(Z) 2(Z

where n is the number of channels in the signals x, v, w. In fact. if we

insist that square transfer functions are, generically, invertible, then

1 (z) is an nxn nonsingular matrix, so that--
31

H (Z) H (Z)
21 22

rank -n (4.13b)

f31 () 932(Z

Conversely, If (4.13b) holds, then

C711 (z)Dl(z) - H31(z)132(z) (4.14) -

Choosing C1(z) arbitrarily we obtain A2(z). C2 (z), D I(z) via (4.11a).

(4.12a) and (4.14). respectively.

In summary, a necessary and sufficient condition for a decomposition of

the form (4.10) to exist Is that the rank condition (4.13b) holds and in

addi tion

B (Z) 0 (4.15)
13

76
Ito

-7S

Given a transfer function H(z) that satisfies the decomposability

conditions we can always compute B I(z), 8 . In fact. we may choose

C (z) arbitrarily, and the simplest choice is --C (z) 1. This yields the

* decomposition

-P 0 0 [11 (Z) N12 (Z) 0]
H~) I 21(z) m7,lH3(z)%32(z) o (4.16)

[o H1(z) H()J [0 0 J

a-

177

- -. - -- - -. - -- - N14

786

SELTION 5

CLASSIFICATION OF ARCHITECrURES

Completely regular M(4s were characterized in the previous section in

terms of their dependence vectors. It was also indicated that XCNs with

different dependence vectort may nevertheless be equivalent, namely they

will have equivalent space-time representations. The equivalence of

completely regular M(4s is easy to verify, since it amounts to the existence

of a nonsingular linear transformation relating the dependence matrices of

the 104s in consideration.

The study of equivalence can be carried out at several different levels

of abstraction. At the lowest (most detailed) level each completely regular

1CN is represented by a dependence matrix

D]5.1)

where di are row vectors of length 3 whose first two coordinates represent

the planar space of integrated circuits and the third coordinate represents

time. Thus, for instance, the M10 of Figure 5-1 is characterized by the

dependence matrix

Dm[1 .1 0

Notice that the time coordinate of all three dependence vectors equals to 1.

reflecting the assumption that each dependence vector represents a

computation that requires a unit of time. This assumption can, of course,

be modified to incorporate computations with unequal processing times.

Notice also that the direction of dependence vectors coincides with that of

the arrows in Figure 5-1, pointing toward the successors of a given

processor, rather than toward the predecessors of the same processor, as in [25].

79

yI'

Figure 5-1. Example of a Completely Regular 10N

At the intermediate level of abstraction only the spatial coordinates

of each dependence vector are considered. This results in the elimination

of the third column of the dependence matrix D, resulting in the truncated

dependence matrix D

D 0 1

for the example of Figure 5-i. We shall show in the following section that

the truncated dependence matrix D provides, in fact, a complete, albeit5

implicit, characterization of the M0. This characterization can be

transformed in a unique manner into the explicit characterization D.

At the highest level of abstraction only the topology of the hardware

is considered. This means that the directed graph representing the flow of

data is replaced by the corresponding non-directed graph. Thus, for

instance, the NCR of Figure 5-1 and that of Figure 5-2 are topologically

equivalent, even though the latter has a different depende-ce matrix, viz.

D 0_1

801

Figure 5-2. A Completely Regular IN Which is Topologically Equivalent

to that of Figure 5-I

This section is devoted to the study of topological equivalence

followed by the study of architectural. (D) equivalence. The more

complicated topic of space-time equivalence is presented in the following

section, where it is also shown that distinct hardware configurations may,

nevertheless, have equivalent space-time representations.

* 5.1 TOPOLOGICAL BQUIVALENCE

The topic of topological equivalence has been studied by Niranker and

Winkler [25], who have shown that there are only three distinct topologies

(Figure 5-3):

(1) The linear topology, with a single dependence vector,

D =[1 01

(2) The rectangular topology, with two dependence vectors,

Ji o

D 1I

81

a. The Linear Topology

b. The Rectangular Topology

6. The Nexagonal Topology

Figure 5-3. The Three Fundamental Topologies

82

(3) The hexagonal topology, with three dependence vectors,

1 0]

Every systolic-array-like architecture can be related by a linear

transformation to one of these fundamental topologies. Also, it is

impossible to have more than three non-colinear dependence vectors in a

planar architecture.

The same conclusion can be reached by a graph-theoretic argument. The

graph describing the hardware configuration of a completely regular M10 is

clearly a mosaic, i.e., a planar graph in which all faces are bounded the

same number of edges and all vertices (except those on the external boundary

of the graph) have the same number of incident edges. As is well known,

there are only three possible mosaics [21]: triangular, rectangular and

" hexagonal. The triangular mosaic has vertices of degree 6 and coincides

with the hexagonal topology. The rectangular mosaic has vertices of degree

4 and coincides with the rectangular topology. The hexagonal mosaic (Figure

5-4) does not correspond to a completely regular MC0, since it requires two

sets of dependence vectors rather than one. However, it can be rearranged

by combining pairs of adjacent processors into a single processor (Figure 5-

4b). so that the resulting configuration has a rectangular topology. Thus,

there are only two mosaics corresponding to completely regular MCNs, which

-] combined with the linear configuration makes a total of 3 fundamental

- topologies.

L8-

L 3 L_

a. The Mosaic

b. Rearrangement as a Rectangular Topology

Figure 5-4. The Hexagonal Mosaic

84

27

5.2 ARCHITECTURAL BQUIVALENCE

.. Each of the interconnecting wires in the three fundamental topologies

can be associated with two direction vectors, one pointing along the wire in

one way, the other in the reverse. This makes a total of three

possibilities for each interconnecting wire: (i) + d, (ii) -d, and

* (iii) ± d. This means that the linear topology results in 31 = 3
architectures, the rectangular topology in 32 = 9 architectures and the

hexagonal topology in 33 - 27 architectures. Since many of these

architectures are equivalent, a classification of the distinct architectures

is provided in Table 3-1. The nomenclature consists of a capital letter

(L, R or H) indicating the topology (linear, rectangular or hexagonal), a

digit indicating the number of dependence vectors and a lower case letter,

* whenever required, to distinguish between architectures which have the same

topology and the same number of dependence vectors but are not equivalent, L

e.g., H3a and 53b. The table lists all equivalent configurations in a

single row.

5.3 PERIODICITY ANALYSIS AND THROUGPUT

The occurrence of cycles (i.e., closed loops of directed arcs) in the

U directed graph representing a hardware architecture provides important

information about the throughput rate of the architecture. In this

. subsection we analyze this information and identify the configurations with

low throughput.

The periodicity index x of architectures has been defined in Section

4.2. It can be computed either by examining undirected loops in the graph

* representing the architecture or by solving the equation

Ds - 0 (5.2)

for every possible row vector A with integer elements, and summing the

elements of q. The periodicity index if equals the smallest of these" ,

85

1 - o . - - • - - -. _.

4

TABLE 5-1. CLASSIFICATION OF RARDWARE ARCHITECTURES

4

Pair I Pair 2 Pair 3

Li

L2

-R2I

R3

+ __r

R4.

113b

H4b

116

86

4h..

-n 77 t

r.

sums. If no solution ij exists, it is defined to be 1. Following this

technique we conclude that L, R2 have no solution and have a unit

periodicity index, while other architectures have solutions, as follows:

(i) L2 has v -(1 13; hence x 2.

J (ii) R3 has [1 1 0]; hence at 2.

(iii) R4 has q= [1 1 0 01, [0 0 1 11; hence vt 2.

(iv) W3a has ij [1 1 -1]; hence vt 1.

(v) B3b has wj [1 1 1]; hence a = 3.

(vi) H4a has l = [1 1 -1 01, [0 0 1 1], [1 1 0 11; hence xt 1.

(vii) H4b has ' - [1 -1 0 1], [0 0 1 1]; hence nt I.

(viii) HS has (1 (I 0 1 0 -13, [1 1 0 0 03, [0 0 1 1 01; hence

(ix) B6 has q = [1 0 1 0 -1 0], [1 1 0 0 0 0], [0 0 1 1 0 0].

[0 0 0 0 1 11; hence w -1.

In the sequel we shall measure the throughputs of architectures

relative to the throughput of the linear architecture LI (a classical

L. pipeline). Since the time interval between two successive applications of

input equals the periodicity index, the relative throughput of a given
architecture is given by the formula

relative throughput (5.3)periodicity index

Thus, the relative throughput of L2, R3, R4 is 1/2 and that of 93b is

1/3.

87

. 5.4 BOUNDARY ANALYSIS

No assumption has been made up to this point about the shape of the .4

boundary of a given hardware architecture. However, since the shape of the

boundary is channed by linear transformation it has to be taken into

consideration in the process of classifying architectures. As an example

consider the 6 equivalent configurations denoted by 3a (Table 5-1). The : .

truncated dependence matrices of the first and third of these configurations

are related by a linear transformation, viz.

Nov assume that the first configuration has a rectangular boundary, which

can be characterized by boundary matrix -:

8 0

D[1

consisting of all dependence vectors colinear with the boundary. The linear

transformation maps this boundary into

B, B
nas is ..]=~ 2~

which characterizes a parallelogram rather than a rectangle. Thus, the

first H3a configuration with a rectangular boundary is equivalent to the

third 93a configuration with a parallelogram boundary. It is not

equivalent, however, to the third M3a configuration with a rectangular

boundary. Clearly, we need to reclassify the entries of Table 5-i according

to both the dependence matrix and the boundary.

We shall be concerned only with boundaries that satisfy the two

following conditions:

(i) The boundary curve is a closed convex polygon

88
r',imi

(ii) Each segment of the boundary curve is colinear with some

dependence vector.

Thus, the only possible directions for the segments of the boundary curve

* .- are [1 0]. [0 11 and [1 1]. Consequently, there are four possible

*boundary curves (Figure 5-5): rectangle, parallelogram, lower triangle,

* upper triangle. Of these, only the rectangle-shape boundary can be applied

to the linear (1) and rectangular (R) architectures. On the other hand, all

four possible boundaries can be combined with hexagonal (N) architectures.

However, since linear transformations map rectangles into parallelograms and

lower triangles into upper ones, we need only consider the combination of

each hexagonal entry of Table 5-1 with either a rectangular or a triangular

*- boundary.

L89

a. Rectangle

.

b. Parallelouram

a. Lower Triangl d. Upper Tniagle

Figure 5-5. Fundamental Boundary Curves

90I

TABLE 5-2. CLASSIFICATION OF HARDWARE ARCNITECTURES
WITH RECTANGULAR BOUNDARIES

L21 R 2 R3 R4

1 0 1 0 1 0 1 0 1 0

-1 0 0 1 -1 0 -1 0

0 1 0 1

0 -1

!3aa 3ap 13b 4aa 4ap

1 0 -1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1
/ L1 1 1 1 -1 -1 1 1 -1 0 -

-1 -1 -1 -1

B4ba 14bo B5Q RSA 16

1 0 1 0 1 0 1 0 1 0

0 -1 0 1 -1 0 -1 0 -1 0

1 1 0 -1 0 1 0 1 0 1

•""-1 -1 1 1 0 -1 1 1 1 1S1 0 -1 - 1 1 1

91
. .-.- 9

J

With rectangular boundaries we need to consider matrices of the form

[Ba I(5.4)

Clearly .

[D1 -**~=[DS]

J

which shows that the reversal of all dependence vectors does not produce a
.

new configuration. The 6 entries in each one of the rows H3a, 54a, H4b, I5

of Table 5-1 can, therefore, be considered as 3 pairs of conjugate

configurations. Of these, the second and third pair are still equivalent . -

when combined with rectangular boundaries, but the first pair is different.

Thus, the entries of Table 5-1, when combined with rectangular boundaries,

can be reclassified as in Table 5-2. This time each architecture is

specified by its D matrix rather than by a pictorial description as in

Table 5-1.

Similarly, we can combine each hexagonal entry of Table 5-1 with a - -

lower triangular boundary. This will again produce two distinct

architectures for each one of the rows I3a, H4a, H4b, IS. However, there

is no need to do it explicitly, since the resulting configurations can

always be obtained by 'cutting' the appropriate hexagonal topology combined

with a rectangular boundary along the main diagonal. Thus, it will be

sufficient to focus in the sequel upon rectangular boundaries alone.

5.5 SUNNARY

Systolic-array-like architectures have been classified by topology,

interconnection pattern and shape of boundary. We have shown that there are

only 15 distinct (non-equivalent) architectures (see Table 5-2). We have

also shown that it is sufficient to consider only rectangular boundaries

which are of practical importance in the process of VLSI layout. -

92 _

A genealogical chart (Figure 5-6) shows which architectures are

contained in any given architecture. In particular, it shows that H6 is

the 'universal architecture' for systolic arrays, containing every possible

architecture with a smaller number of dependence vectors.

Ll

I. -_

Io

115B:

Figure 5-6. Genealogical Chart for Architectures

. 93

AD-Ri46 030 ANALYSIS AND DESIGN METHODOLOGY FOR VLSI COMPUTING 2/2
NETWORKS(U) INTEGRATED SYSTEMS INC PALO ALTO CA
H LEY-RRI RUG 84 ISI-46 N88i4-83-C-0377

UNCLSSIFIED F/G 9/2 NL

mmons-mmhhihhlmEEEEmmiEmhmhEE
mmmmmaimaiiEND

1.0.

VA- -.*,

-J,

liii L30 1 1-2

11111-2 LI1 11.6

p.'

MICROCOPY RESOL.UTION TEST CHART
NATIONAL BURiMJ OF STANDAR 1963-A

'o

SECTION 6

CLASSIFICATION OF SPACE-TIE EPSENTATIONS

The space-time representation of a completely regular CNG was

characterized in the previous section by the dependence matrix D. The

hardware configuration was obtained by focusing upon the spatial coordinates

of the dependence vectors, which resulted in the truncated dependence matrix

D . It was observed that the temporal coordinate of all the architectures5

described in Section 5 was always equal to 1. viz.,

D [Ds (6.1)

i so that the dependence matrix D can be easily reconstructed for any given

D via (6.1). The properties of the corresponding space-time diagram can
then be deduced by analysis of the dependence matrix D.

6.1 THE FUNDAMENTAL SPACE-TIME CONFIGURATIONS

Each of the fundamental 11 architectures of Table 5-2 determines a

fundamental space-time configuration. Ve shall focus our attention upon the

dependence matrix alone, without considering. for the present, the shape of

the boundary surface. Thus, equivalence between the fundamental space-time

configurations is established by relating the corresponding dependence

matrices by linear transformations. A simple analysis (see Appendix F)

shows that every dependence matrix with 2 vectors can be transformed into

the equivalent (canonical) form

D(2) [1 :
10

PREVSPAGE

95

. .. . ,

and every dependence matrix with 3 vectors can be transformed into the

equivalent form

D1 0 1 01
0 0 1.

Consequently, L2 R 2 and R3 - H3a - 13b where the tilde (-) denotes

equivalence. For dependence matrices with more than 3 vectors it is

convenient to establish first a (nonunique) canonical equivalent, i.e., an

equivalent dependence matrix whose first three rows are the identity matrix,

viz.,

D =:
D= 0 1

*Some canonical-form equivalents are listed in Table 6-1. The full list of

canonical equivalents will be discussed in later sections in conjunction

with the specification of boundary surfaces in the three-dimensional space- . _

time continuum.

6.2 ARCHITECTURES WITH LOCAL MEMORY g.iL--

The preceding analysis was based upon the assumption that processors

transmit the results of computations to their immediate neighbors and never

store them for further use. However, many applications do involve such P

storage; this is true, in particular, for adaptive system/parameter

identification algorithms that store the identified parameters in fixed

location within the array and use the signals that flow through each

processor to time-update the locally stored parameters. In this section we - - -

consider the architectures obtained by providing each processor with a local

memory.

O

96.

TABLE 6-1. CANONICAL FORM BQUIVALENTS FOR FUNDAMENTAL ARCHITECTURES

*Li L2,R2 R3, R3a13 b R4

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1
1 -1 1 _

34a 84b N5 36

I.

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 00 1 0 0 1

*3/2 -1 1/2 -1/2 1 1/2 -1/2 1 1/2 -1/2 1 1/2

3/2 -1 1/2

97

Topologically, local memory means the addition of a self-loop to each

processor (Figure 6-1). The direction of each interconnecting link can

still be chosen in 3 distinct ways, as explained in Section 5.2. resulting

in 11 new architectures (Table 6-2). Two important observations have to be

made regarding this table:

(i) The number of dependence vectors is larger by one than the number

of interconnections. Thus, for instance, RN3 has 4 direction

vectors, not 3.

(ii) The length of the last dependence vector, corresponding to the

local memory, equals the temporal displacement between two

consecutive occurrences of the same processor in the space-time

configuration. Thus, in general, this displacement is 1, except

for L2, R3, R4 whose temporal displacement is 2 (corresponding to

a periodicity index of 2), and except for B3b whose temporal

displacement is 3 (corresponding to a periodicity index of 3).

Local memory can also be used to interleave computations and achieve .

increased throughput with architectures whose relative throughput without

memory is less than 1. This possibility will be discussed in Section 6.4.

Analysis of equivalence between space-time configurations with local

memory reveals that:

(i) Iii, which has 2 linearly independent dependence vectors, is

equivalent to L2, 12.

(ii) R2, which has 3 linearly independent dependence vectors is

equivalent to R3, 3a, H3b.

(iiI) hW3a, which has 4 dependence vectors, is equivalent to R4.

In all three cases we can trade interconnecting links for memory, thereby

98

1

a. The Linear Topology with Memory (LI)

b. The Rectagular Topology with Memory (IN)

Go The Nexagonal Topology with Memory (M

Figure 6-1. The Three Fundamental Topologies with Local Memory

I 99

..1-._:'.- -- ,-.. . 7.";" -.- :-. ° " . '" ":v . , - - .7 .: - ..- , .: _.Y"-. - - .: - - .;7 ; '- . _ . , . . .'-..,-,

...--. • _ . i . .

TABLE 6-2. THE FUNDAMENTAL BARDWARE ARQIITECTURES WITH LOCAL MEMORY

Imi LJ12 330 3313 33

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 0 1 -1 0 1 0 1 1 -1 0 1 -1 0 1

0 0 2 0 0 1 0 1 1 0 1 1

0 0 2 0 -1 -1

0 0 2

13 DX3b M14a =4b IS 336

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 101 , _

0 1 1 0 1 1 0 1 1 0 -1 1 -1 0 1 -1 0 1

111 -- 11 111 11 1 0 1 1 0 1 1

0 0 1 0 0 3 -1-11 -1 -1 1 0 -1 1 0 -1 1

0 0 1 0 01 1 11 1 1"

0 0 1 -1 -1 1
0 0 1..-.!

100

reducing the number of physical wires required to construct a realization of

the architecture and simplifying the layout problem for VLSI implementation.

Thus, for instance, the R2 architecture which requires a planar network of S

processors with 4 interconnecting ports at each'processor can be replaced by

LKI which requires a linear network of processors with 2 interconnecting

ports at each processor and a local memory. Even more remarkably, the same

replacement also trades low throughput configurations for high throughput S

one s.

6.3 BOUNDARY ANALYSIS S

The relation between boundary shapes and equivalence between (planar)

architectures has been examined in Section 5.4 The combination of topology

and boundary has produced 15 distinct architectures which were summarized in p

Table 5-2. Since each one of these architectures has a rectangular

boundary, the resulting space-time configuration always occupies a

rectangular prism (with the exception of low-dimensional architectures such

I as Li, L2, R2 whose space-time configurations occupy 1 or 2-dimensional -

subspaces).

Since linear transformations change the shape of the boundary, the

equivalence between space-time configuration, discussed in Sections 6.1 -

n 6.2. has to be reexamined to include the effects of boundary

transformations. It will be sufficient to carry out this analysis only for

collections of space-time configurations which have been declared as

equivalent in the preceding sections.

6.3.1 The Confiturations LM. L2. R2

The configurations Il, R2 can be considered equivalent only when we

assume that a single set of inputs is applied to R2 (rather than a time- .

series). In this case R2 is characterized by

0 1 1

0 1 1 " -

L 101 -i.?

* while Liii is characterized by

[D] 0 [I 1
and the two are equivalent, being related by a linear transformation, viz., -

On the other hand, Liii and 32 are not equivalent to L2 for which -

The P-part of this characterization can be related to the D-part of LMi.

viz.#

where the asterisks denote entries which can be chosen arbitrarily (subject

to the nonsingularity constraint of the linear transformation). However,

when the dependence matrix is combined with the boundary matrix we obtain

1 j1 001 [1 01

0 1 [0: 1jl. _I 0 1 -

which does not match the 3-part of 12. When the inverse of this

transformation is applied to the dependence and boundary matrices of L2.

viz.#

1- i-1- 1 0 1 0-07 -1-1
0 0) 1m / 0 1j

102

4o

apace

IA time

L

'010

the resulting configuration (Figure 6-2) is equivalent to an LMI

configuration of infinite order; the finite active part of the architecture

is shifted one cell to the right every time a new input is applied. Thus,

in summary. LKI and R2 are equivalent to each other but not to L2.

6.3.2 The Configurations RM2. 3. Ms. H3b 71

The truncated boundary matrix of these configurations was chosen in

Section 5.4 as

namely, the rectangular boundary. The corresponding boundary surface in the

space-time continuum is, therefore, characterized by the boundary matrix

B= 1 (6.1)
01

When this boundary matrix is combined with the dependence matrices of DM2,

R3, H3a•, aO, R3b, equivalence is destroyed. For instance, trying to

relate Mau to RM2 we obtain

[1 0 1 1 0- 1

] I 1 1 0

0 5 L10

The resulting D-part coincides with the dependence matrix of RM2, but the

boundary surface is different. The configuration obtained above by

transforming H3aa is in fact an RM2 hardware of infinite order in which

a finite active segment shifts along the diagonal by one cell each time a

set of inputs is applied to the array. This is, in fact, precisely what

happens in systolic arrays for matrix multiplication. The configuration

Da* (of Weiser and Davis [4)) is suited for multiplying banded matrices.

When the same problem is implemented on an RM2 configuration (of S.Y. Kung

[71) most cells in the array are idle while a small active rectangle,

104

corresponding to the bandwidth of the given matrices, shifts along the main

diagonal of the array. In analogy, while multiplying two matrices with no

structure is carried out efficiently by an R33 array, solving the same -

problem on an 93a configuration involves many' idle cells and a small

active segment that shifts along the main diagonal.

6.3.3 The Configurations HM.a, R4

These configurations have the same boundary matrix, given by (6.1), as

RN2, R3. 13a and H3b. Since their dependence matrices are different, we

conclude that m/3aa. HM3ap, R4 are distinct configurations when the shape

of boundary surface is taken into account.

6.3.4 Summa"

When boundary considerations are taken into account each of the 15

architectures of Table 5-2 is distinct and cannot be related by equivalence

to any other architecture in this table. Incorporating local memory results

in doubling the total number of distinct configurations to 30.

6.4 INTrMLEAVING ARC(ITECTU3ES BY LOCAL NMORY

The introduction of local memory in Section 6.2 involved the assumption

that locally stored data remain in memory until required, which makes _

particular sense in data driven realization. Consequently, the duration of

storage for some architectures (L2, R3, R4, H3b) was longer than one time

unit. This fact can be used to construct new architectures with higher

throughput, by interleaving computations in time and connecting the

interleaved computations via the local memory.

The simplest example of such construction is the architecture L2.

Without interleaving the-throughput of L2, UM is 1/2 (Figure 6-3a).

With interleaving, which involves superimposing in time two L2 schemes and 0

interconnecting them via local memory, the resulting LiN2 configuration

105 0

space

time

21

a. Without Interleaving (L112)

space-

time

b. With Isterleaviss M02v)

Figure 6-3. Interleaving via Local Memory

106 _

-.

(Figure 6-3b) has throughput = 1. A similar approach produces the

architectures RIM3, RiM and 1iM3b, whose characterizations are given in

Table 6-3. The difference between these architectures and their

noninterleaved counterparts is the shortening of the local memory dependence

vector from either [0 0 21 or [0 0 31 to [0 0 1].

* S

TABLE 6-3. DEPENDENCE MATI[C.8]MR INTERLEAVED AR ITECTURES

LiJO Ri RM RiM3b

1 0 1 1 0 1 1 0 1 1 0 1

-1 0 1 -1 0 1 -1 0 1 0 1 1

0 0 1 0 1 1 0 1 1 -1 -1 1

0 0 1 0-1 1 0 0 1
0 0 1

6.5 SUMMARY

* Space-time configurations have been classified by topology,

interconnection pattern, shape of boundary, existence of local memory and
interleaving. The 15 fundamental architectures of Table 5-2 give rise to

another 15 configurations involving local memory. These, in turn, give rise

-. to 4 interleaved configurations, producing a total of 34 distinct space-time .

configurations.

L. 107

-_. . . _ . : = . . - - -..- " " : 2'- - - -.-... - ..- - .

Ignoring the shape of the boundary surface results in 20 distinct

configurations:

I

1) I 11) B4au, H4aP

2) IMI, L2, R2 12) B4b, H4bP

3) LN2 13) R94

4) Li2 14) RiM4

5) R32, 13, 3an, R3ap, 113b 15) HM44au, EM4ap

6) R3 16) 1144ba, BM4bP

7) RiM3 17) Ia., H5P

8) UM3aa, MNlap, R4 18) EI(Sa, HMP

9) EM3b 19) B6-

10) HiM3b 20) 1116

Ignoring, in addition, the details of local memory (and. consequently, of

interleaving) results in 8 distinct configurations only as in Table 6-1.

Choosing the optimal configuration for a given computational scheme

requires a specification of both the interconnection pattern and the

boundary shape. This can be accomplished only when specific details of the

corresponding computational scheme are taken into account (e.g., bandedness

of matrices to be multiplied). When only partial information is considered

the designer is often able to choose -the interconnection pattern but not the

boundary. Thus, multiplication of two matrices can be implemented in any of

the five equivalent hardware configurations 10 (7], R3 (10], M~aa [41,

Wag, 13b [5]. However, RN2 will be optimal if both matrices have no

particular structure; R3 will be optimal if only one of the matrices is

banded; and H3aa (or Mlap) will be optimal if both matrices are banded.

It is an historical curiosity that the first systolic array for matrix -

multiplication, R3b, is never optimal, because it has relative throughput

of 1/3 and is otherwise equivalent to 13a.

10

108

SECrO t 7

* S

A modeling and analysis methodoloty for parallel algorithms and

architectures has been presented, Modular computing networks (MCNs) were

introduced as a unifying conqept that *a* be used to describe both

algorithms a~d architectures. Th rtiresentation of an MCN exhibits all the

relevant information that characterizes a parallel processing aigorithm,

from precedence relations and order of execution, through scheduling and

r- pipelinability consideration, to map compositions and global

characterization. It clearly displays the hierarchical structure of a

parallel system and the multiplicity of choices for hardware implementation.

Our methodology applies both to arbitrary (irregular) networks and to

iterative ones. Regularity of networks translates directly into regularity

of the model we use to describe them and, consequently, into regularity of

the associated architectures. Problems of non-executability (deadlocks,

safeness, etc.) are insignificant in our methodology and can be easily

detected and resolved.

Infinite MCqs, which occur in most signal processing applications, have

been characterized. It has been shown that the key property for

executability of such networks is structural finiteness (in addition to

absence of cycles, of course). Infinite M(Ns are most frequently iterative,

.. in which case they are guaranteed to be structurally finite and can be

represented by a finite single-layer diagram.

Dimensionality, pipelinability and throughput have been introduced as

-fundamental structural attributes of MC models. Throughput computations

(see, e.g., [9]) have been established as a direct consequence of the notion

of schedule, which applies to every MCN model. The wavefront concept

[4,7,8] has been shown to be a natural outcome of associating schedules with

iterative networks. Systolic-array-like architectures were modeled and

analyzed via the concept of completely regular MCNs.

L 109

A classification of canonical realizations for completely regular

modular computing networks has been presented. Three levels of abstraction

were considered: topology, architecture and space-time representation. The 0

analysis revealed 3 canonical topologies, 15 canonical architectures and 34

canonical space-time configurations. It was shown that the unigue canonical

counterpart of any given topology, architecture or space-time configuration

is obtained via a simple (and unique) transformation of the corresponding -

dependence and boundary matrices. It was also shown that only rectangular

boundaries are required to implement any canonical realization. While

ignoring boundary details allows some flexibility of design, it also results

in inefficient implementations, as explained in Section 6.5.

It is interesting to observe that only a small fraction of the

architectures described in this memo have actually been used in the design

of parallel algorithms. The most commonly encountered architectures are the

linear ones (.2, LiM) which are used for linear filtering (= convolution,

polynomial multiplication) and related computations. Next comes the

rectangular architecture RM2 and its equivalents--R3, H3a, H3b-which are

used in matrix products, matrix triangularizations, solutions of linear

equations, QR-factorizations for eigenvalue problems, and adaptive P

multichannel least-squares algorithms. Thus, all applications involved, to

date, only architectures with 3 dependence vectors or less. Notice also

that the classical pipeline (I) has no use as a signal processing

architecture. 0

-S

110
- 3 __

I p.,

SECIHO 8

TECNIQL ,,LICATIONS

* P

The following technical papers have been written under contract number

N00014-83-C-0377.

1. H. Lev-Ari, 'Modular Computing Networks: A New Methodology for Analysis
and Design of Parallel Algorithm.%iArohitectures,' ISI Technical Memo,
ISI-29.

2. S.Y. Kung, 'On Supercomputing witV. Systolic/Vavefront Array Processors,'
Special Issue on Supercomputing, IEEE Proc., July 1984.

3. H. Lev-Ari, 'Canonical Realizations of Completely Regular Modular
Computing Networks,' ISI Technical Memo, ISI-41.

4. B. Lev-Ari, 'A New Methodology for Representation and Analysis of
Parallel Algorithms and Architectures,' in preparation.

k---

L.

Li......

[l] I.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice
* Hall, 1981.

[2] S.Y. Foo and G. Musgrave, 'Comparison of Graph Models for Parallel
* Computation and Their Extension.' 1975 International Slunosium in

CRDLs and Their Applications, pp. 16-21.

[3] S.L. Johnson and D. Cohen, 'A Mathematical Approach to Modeling the
Flow of Data and Control in Computational Networks,' in H.T. lung. at
al. (eds.), VLSI Systems and Comvutation, Computer Science Press,
1981.

[4 U. Weiser and A. Davis. 'A Vavefront Notation Tool for VLSI Array
Design,' in H.T. lung, et al., ibid.

[5] I.T. lung, 'Why Systolic Architectures?,' IEEE Compute, pp. 37-46,
January 1982.

[6] N.C. Chou and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,' in S.!. lung, et al. (eds.), Modern Signal
Processing and VLSI, Prentice Hall, 1984.

[7] S.Y. lung, et al., 'Wavefront Array Processor: Language, Architecture
and Applications,' IEEE Trans. Com ., Vol. C-31, pp. 1054-1066, Nov.
1982.

[81 5.!. lung, 'VLSI Array Processors for Signal Processing.' Proceedings
of Arab Summer School in Modern Simnal Processin , Aug. 1983.

[9] H.V. Jagadish, T. lailath, I.A. Newkirk. and R.G. Mathews, 'Pipelining

in Systolic Arrays,' submitted to the Seventeenth Asilom-ar Conference
on-Circuits and Systems, Pacific Grove, 1983.

*[10] S.K. Rao and T. Kailath, 'VLSI and the Digital Filtering Problem,'

submitted to MIT Coniference on Adyanced Research in VLSI. 1983.

[11] A.A. Markov, 'The Theory of Algorithms,' Amer. Math, Soc. Trans.

[12] F. Rennie, Introduction t9 Conutability, Chi. 1, Addison-Wesley, 1977.

1 13] A.V. Aho, J.E. Hoporoft, and J.D. Ullman, Data Structulres and
AiggxIithms, Ch. 1. Addisonr-Wesley.

*[14] D.F. Robinson and L.R. Foulds, Digraphs: Theory ad Techniaues,
Gordon and Breach, 1980.

* - 113

[151 C. Berge. The Theory of Graphs and Its Applications, Methuen, London,
1964.

[16] C.L. Seitz, 'System Timing,' in C.A. Mead and L. Conway, Introduction
to VLSI Systems, Addison-Wesley. 1980.

[171 Y. Malachi and S.S. Owicki, 'Temporal Specifications of Self-Timed
Systems.' in H.T. Kung, et al., ibid.

[181 J.B. Dennis, 'Data-Flow Supercomputers,' IEEE Computer, pp. 48-56, -

Nov. 1980.

[19] W.V. Wadge, 'An Extensional Treatment of Dataflow Deadlock.'

[20] F. Commoner, A.W. Holt, S. Even, and A. Pnueli, 'Marked Directed -

Graphs,' J. Com. Syst. Sci., Vol. 5, pp. 511-523, 1971.

(21] 0. Ore, Graphs and Their Uses, Math. Assoc. of America, Yale, 1963.

[221 P. LaGuernic, A. Beneveniste, and T. Gautier, 'Signal: Un Langage
pour le Traitement du Signal.' IRISA Research Report No. 206, May -

1983.

[231 J.P. Roth and L.S. Levy, 'Equivalence of Hardware and Software,'
Research Report RC 9464, IBM Watson Center, Yorktown Heights, NY, May
1982.

124] M.C. Chen and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,' in S.Y. Kung, et al. (eds.), Modern Sianal
Processing and VLSI, Prentice Hall, 1984.

[251 W.L. Miranker and A. Winkler, 'Spacetime Representations of Systolic
Computational Structures,' IBM Research Report RC 9775, Dec. 1982.

[26] P.R. Cappello and K. Steiglitz, 'Unifying VLSI Array Design with
Linear Transformations in Space-Time,' Technical Report TRCS 83-03,
University of California, Santa Barbara, Dec. 1983.

[271 D.I. Moldovan, 'On the Design of Algorithms for VLSI Systolic
Arrays,' Proceedinas of the IEE , Vol. 71, pp. 113-120, Jan. 1983.

[28] P. Quinton, 'The Systematic Design of Systolic Arrays,' IRISA Report
No. 193, France, Apr. 1983.

[291 R. Lev-Ari, 'Nodular Computing Networks: A New Methodology for
Analysis and Design of Parallel Algorithms/Architectures,' ISI
Technical Memo, ISI-29, Dec. 1983.

[301 B. Lisper, 'Description and Synthesis of Systolic Arrays,' The Royal
Institute of Technology Report TRITA-NA-8318. Stockholm, Sweden, 1983.

[311 C.J. Kuo, B.C. Levy, B.R. Musicus, 'The Specification and Verification
of Systolic Wave Algorithms.' MIT Report LIDS-P-1368, Cambridge, MA,
March 1984.

1140 • -

1321 H. Lev-Ari. 'Nodular Architectures for Adaptive Multichannel Lattice
Algorithms.' Proc. 1983 IEE. lat. Conf. on ASSE pp. 455-458, Apr.

1 1983.

r7-
L

UL

115

*, o

APPENDIX A

PROOF OF THEOREM 2.2 FOR INFINITE MCNs

If the CN has an execution then it must be acyclic, as was pointed out

at the beginning of Section 2.3. To prove the converse we shall construct

an execution for an arbitrary &cyclic, structurally-finite MC.

First, notice that, by Theorem 2.1. the inputs of the CN can be

numbered. Let us, therefore, denote the inputs by (zi; 0 1 i *1. Next,

recursively define a sequence of sets of variables (MI according to the

following rule:

10 :=(x 0 .

N 1 u(A z M

Thus, each set contains one new inputs of the MC and all the immediate

successors of the preceding set. The sets Mt are clearly disjoint, and,

* in view of the local-finiteness property, each M i set is finite.

Moreover, every variable of the 1N4 is included in some Kt set, because

every variable is either a global input or a finite successor of some global

input. Thus, the cascade

" No *K N1 .M2.... '

0 1 2

is, in fact, a representation of the network as a cascade of finite

(disjoint) subnetworks. Each M set is finite, hence has an execution

with a finite number of levels. If we replace each N1 by its execution,

we obtain a refinement of the previous representation, viz.,

3 S SJ

117

-1
.4

where (S)j are the levels corresponding to the set Mi Since each S i

is finite, this Is clearly an execution of the global MCN.

118

APPENDIX B

ADMISSIBLE ARHITECTURES

A composition of processors is called admissible if the following three

conditions are satisfied:

(i) There are no dangling inputs or outputs.

(ii) There are no directed cycles.

(iii) The architecture is structurally finite.

Each of the processors comprising an architecture can itself be a

composition of more elementary processors. The hierarchical nature of the

admissibility property implies the following result.

Theorem B.1

I-J An admissible composition of admissible architectures is itself an

admissible architecture.

Proof:

The theorem states that the three properties making up admissibility

should be exhibited by the composite architecture, if they were exhibited by

each of the subuetworks.

(i) The composite architecture has no dangling terminals, because
every terminal is connected to some subnatwork (by admissibility
of the composition) and no subnetwork has dangling terminals (by
admissibility of the subnetworks).

(ii) The composite architecture has no cycles because neither the
subnetwork nor the composition has cycles.

119

(iii) Structural finiteness Is made up of the three following
properties: Local finiteness, finite ancestries, and
countability of connected components. Local finiteness is
inherited by the composite architecture because composition does
not change the number of inputs/outputs of processors within
each subnetwork. To prove that the finite ancestry property is
also inherited by the composite architecture it will be
sufficient to consider a single variable a. Suppose that -
belongs to some subnetwork (fi By the admissibility of the
composition, t4 has a finite number of ancestor aubnetworks.
The ancestry of a is obtained by tracing back the ancestry
relation through the finite collection of subnetworks e(%o).
And since each subnetwork is admissible, the portion of nai)
within each ancestor of &j is also finite, hence aCz) itself
is finite. Finally, an admissible composition has a countable

number of subnetworks (see Theorm 2.1) and each subnetwork has,
by assumption, a countable number of connected components.
Hence, the total number of connected components in the composite
network is countable, too.

12-

120 _

<1

r

APPENDIX C

PRooF OF MgIEORE 2.3

* MINIMAL EXECUTIONS OF FINITE MCNs

Every execution determines a numbering E() of the variables of an

MCN. viz..

x s S (>(x) i

This integer valued function satisfies the inequality (see Section 3.1)

E(x) -1 .max (E(y); y a a(z)) (C.1)

y

Every finite directed acyclic graph has a unique numbering V() of its

arcs (or equivalently of its vertices) that satisfies the equality

B(x) - 1 max (y); y a a(x)) (C.2)

This well-known result (see, e.g., [14]) implies that every finite

executable MHi has a unique execution that satisfies (C.2). We shall call

this unique execution minipal for reasons that will become clear in the

sequel.

Lot E() be an arbitrary non-minimal execution. Then, there exists

some variable z for which the strict inequality

E(x) - 1) max (E(y); y a a(z))

y

holds. This means that x is evaluated several steps after all its

I ~ancestors became available. Consequently, the numbering of x can be

modified to 1 + max (M(y); y a a(x)) without violating the precedence

121

relation. We shall refer in the sequel to this modification as an

elementary shift.

Each execution is a series-parallel combination and consequently has a

well defined input-output map. Elementary shifts replace expressions of the

form e*e...Sp by expressions of the form p.e....e (see Figure C-1).

If the physically Justifiable identity -

p*e = eop (C.3)

is added as an axion of the theory of MCNs (see Appendix D). we conclude

that input-output maps remain invariant under elementary shifts. This leads

to the following result.

I

Teorem C.i

Every execution E() of a finite NCN can be transformed by a finite

number of elementary shifts into the unique minimal execution.

Proof:

The minimal execution E() is constructed by the following simple

algorithm (see, e.g., [14]):

(M) Put all the global inputs of the GN(in S0 *

(ii) For i - 0,1.2... put all the immediate successors of members
of Si in +

12_

122

[]

UD

~J+l

*
I

"

. Before the Shift
|

b. After the Shift

U II
I

.

--
±I

.. , b. After the Shift"

Figure C-i. The Effect of an Elmentary Shift.

E(z) L; Mal MY);)) -

123

Now, if E(.) is a nonminimal execution we transform it into E() by the

following rule: U

For 1 0,1.2 shift all members

of SI from E(x) to E(x) - I.
iI

Since the MCN is finite. a finite number of shifts will transform E()

into E(). Notice that each variable is shifted exactly onc._. Also notice

that by its construction, the number E(x) is equal to the lengths of the

shortest path connecting x to some global input. Hence, E(z) cannot be

further reduced.

Corollary C.1.1

The minimal execution E() satisfies E(x) E_ 5(x) for every variable

x and for every execution V().

Corollary C.1.2

A finite executable MCK has a unique well-defined Input-output map.

This is so because all executions define the same map, by Theorem C.1.

Proof of Theorgm 2.3

Corollary C.1.2 establishes the theorem for finite MCKs. For infinite

networks it will be sufficient to prove that for every execution E() and

for every variable x the map from global inputs to x is unique and does

not depend upon the choice of execution. However. R() induces some

execution on the finite Nl corresponding to a(z), the finite ancestry of

z. Therefore, the map from inputs to z coincides, for every choice of

E(). with the unique map determined by the minimal execution on a(s). -2

124 - -

It is interesting to notice that an infinite MCN does not have. in

general, a minimal execution. The construction procedure described in the

proof of Theorem C.1 Is still valid, bu S1 are, in general. infinite and

* .. do not determine a valid execution.

125

- Ii -

i

-4-

-J -

126

APPENDIX D

ELOENTARY EQUIVALEYCE IRANSFORMATJONS

The general theory of MCOs does not involve any specific assumptions

about the properties of the processor maps (f p). Consequently, there are

only a few equivalence transformations that are still valid in this general

framework. Most equivalence transformations used with block-diagrams and

signal-flow-graphs involve linearity assumptions and do not hold for general

nonlinear maps.

Sr- Two basic maps, the identity map e and the split map s can be used

in conjunction with any MCN manipulation. The identity map leaves its input

variables unchanged, viz.,

The split map duplicates input variables, viz.,

I sOW) (x.z)

It is possible, of course, to have more than two copies of the sane

variable, either by introducing a split processor with several outputs, or

by using several two-output split processors.

The properties of the identity and split processors give rise to

several elementary equivalence transformations (Figure D-1):

- (a) The identity commutes with any other processor f.
-1

(b) The cascade of a processor f and its inverse f can be
replaced by an identity processor, provided the processor f has
an inverse.

(c) The split processor 'commutes' with any processor f.

(d) Amy processor f with two outputs can be replaced by a
composition of a split processor and two single output processors
f, _* The processors f*' f correspond to the maps from
i put to each of the two 6;tpits, respectively.

127

a. Commutativity of the Identity

b. The Inverse Processor

f

f sS

f

c. Cmutativity of the Split

f" 2

d. Splitting of Nultivariable Outputs

Figure D-1. Elomentary Equivalente Transformations

128

APPENDIX E

ANALYSIS OF MATRIX MULTI[LIE

The multiplication of two matrices involves the computation of inner

products between every row of one matrix and every column of the other one.

To emphasize this interpretation we shall consider in the sequel the product

C I.
C :- A B

so that the inner products are between columns of A and columns of B. In

fact, Ci is precisely the inner product between the i-th column of A --

and the j-th column of B. Consequently, we can compute the product by

feeding the columns of A,B, which we denote by ai, b,, into the MCN of

Figure E-1. Each input is a column vector which is propagated without

modification through the network. The a,b inputs of each processor

propagate through without modification and the inner product of the two

input vectors is computed inside the processor. This multichannel

configuration can be further decomposed by observing that the inner products

can be computed recursively, i.e., if c :a aob where a (a b

are column vectors of length N, then c c N where

a ci I + ip , co = 0 "
6- i

Thus, every single processor in Figure E-1 is, in fact, a cascade of basic
'multiply and add' processors (Figure E-2). When this decomposition is

combined with the architecture of Figure E-1, we obtain the 104 for matrix

multiplication. Figure E-3 displays a side view of this 3-D network whose

top view is shown in Figure E-i. The complete M1N consists of N

•" horizontal layers such as in Figure E-1 arranged in a vertical stack.

Equivalently, we may say the 104 consists of three vertical layers such as

in Figure E-3 arranged behind each other. It is important to notice that12L

129

aa 3The3 Complete3Net3or3

b0~

a a Dba

out .. ~ - out

b. A Single Processor

Figure E-1. A Basic Matrix Multiplier

130

* 0

a2 02

C i

out

C

-. Figtre E-2. A Batio Inner Product Array

131

0 0

21

C i C . 2j13 1

Figure E-3. The 104 of Matrix Multiplication

(si4e view shows i-th vertical layer)

132

the direction of the C-paths can be either from top to bottom, as shown in

Figure E-3, or from bottom to top. This is a consequence of the

commutativity and associativity of addition, viz.,

i-i i=N

This means that there are two distinct MXCs that correspond to matrix

multiplication and they differ only by the direction of the C-paths.

Every architecture for matrix multiplication is equivalent to the 1C0

of Figure E-3. The various architectures are obtained by imposing

additional constraints upon the matrices (i.e., bandedness) and rearranging

the resulting reduced NCN as a space-time diagram. The corresponding self-

timed block-diagram follows immediately from this rearrangement.

The matrix multiplier of S.Y. lung [7] is obtained by interpreting the

vertical dimension in Figure E-3 as 'time.' Since vertical arrows

correspond to local storage, the resulting block-diagram is described in

Figure E-4 (notice the similarity with E-1). The elements of each column

vector ai, b are fed sequentially into the array and each processor has a
J .

self-loop which computes the inner-product cij M a b recursively in

time.

The matrix multiplier of S. Rao [10] is designed for a banded B

matrix. It will be sufficient to analyze it for a single column of A, say

ai . The 1CP of Figure E-3 now has only one vertical layer, and many

processors in this layer have zero inputs and can be eliminated. The

resulting reduced 104 is shown in Figure E-$a. Dummy processors, shown in

broken line, were added to emphasize the tridiagonal nature of the 10N. A

self-timed block-diagram (Figure E-Sb) is obtained by considering the

diagonal axis as 'time.' It consists of a linear array of identical

processors, one for each nonzero diagonal of the banded matrix B. The

elements of B are fed into the array by diagonals. The elements of A. C

are handled by columns: Every column of A produces a row of C and

requires a linear array as in Figure 1-Sb. It is interesting to notice that

the input interval of this matrix multiplier is vc + vs where v c is the

133 0

j _i

a. Self-Time Block-Diagram

b ~ out

out~ in, bout W Rev stored in in

b. Single Processor

Figure 1-4. The Matrix Multiplier of S.T. Kung

134

0

' *0

A0

akia

Cik

413

. .. . - E - .-- ----.

time required to compute 'c' and x is the time required to propagatea
#a' through one processor When the direction of the C-path or,

equivalently, of the A-path, is reversed the input interval becomes

Ic - It Since T << T the two networks differ only slightly in their

throughput. However, we shall presently encounter another example where the

reversal of the C-path results in a large increase in throughput.

The matrix multiplier of H.T. Kung is designed for banded A, B

matrices. This means that the active processors in the non-reduced N10 of

Figures E-l and E-3 are located within a parallelepiped aligned with one of

the main diagonals of the rectangular prism representing the non-reduced

1CN. A simple illustration of the reduced 1C4 is obtained by considering

two adjacent horizontal layers (Figure E-6). When we slide the horizontal

layers so that they overlap, the resulting network corresponds to H.T.

Kung's multiplier (Figure E-7). This network clearly has an input interval

of c + 2v . However, if we reverse the C-path we obtain the configuration

of Weiser and Davis [4] (Figure E-8) which has an input interval of

ICc - 2- 1. The difference between the two multipliers is significant whenC a

they are implemented by single rate systolic arrays. In this case - -

cc= ca - so that the former network has an input interval of 3c while

the latter has an input Interval of TI

L

136 t. .

layer I (I

"layer i-I- 0

a. Side View

b. Top View

L Fi~ure 3-6. The Reduced 304 for lauded Matrix Multiplication

13

layer I

layer i+1

a. Side View

b. Top View

Figure E-7. The Matrix Multiplier of H.T. Kong

138

layer i

a. Side View

b. Top View

Fiture E-9. The Natriz Multiplier of Weiser and Davis

139

_I
-I •

,I

. . 4

- o

A..

0

APPENDIX F

EQUIVALH4CE VIA LINEAR TRANSFORMATIONS

Two dependence matrices, say, D1 , D2, are considered equivalent when

there exists a nonsingular linear transformation T and a permutation

matrix P such that

D2 = PDIT (F.1)

This relation is clearly reflexive (with P = I, T I). symmetric and

transitive, so 'equivalence' is indeed an equivalence-type relation.

*Denoting the length of dependence vectors by n, and the number of

dependence vectors by p, we conclude that every dependence matrix with

p n and full (row) rank is equivalent to

D : W (0[] (F.2)
p

which will be defined as the canonical equivalent of such dependence

matrices. When p > n. and the dependence matrix has full (column) rank, _

we can always find a permutation matrix P so that

PD = T (F.3) _

where T consists of the first n rows of the permuted matrix PD. Thus,

the canonical equivalent of dependence matrices with p) n is of the form

(F.3) and the properties of D can be studied by examining the structure of

the smaller matrix X.

However, since the submatrix X in (F.3) is not unique, it is required

first to find all possible canonical equivalents to a given dependence

matrix D. This can be done by applying all possible pl permutations P -

to the rows of D and then computing I via (F.3). However, not all

141

In summary, once all possible canonical equivalents of a given D have -

been computed it is relatively easy to test whether some other dependence

matrix D is equivalent to D. One only needs to compute a single 0

canonical equivalent of D and compare it to the collection of canonical

equivalents of D: a match indicates that D is indeed equivalent to D. -I

14I

• __

L 129

10-84

DTI0

